
 

 

5.3. Impulse-Invariant Method (Impulse Invariant Transformation) 
 In the impulse invariance method, our objective is to design an IIR filter having a unit impulse sample h(n) 
that is the sampled version of the impulse response of the analog filter ( )Ah t . That is, 
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where T is the sampling interval. In consequence of this result, the frequency response of the digital filter is an 
aliased  version of the frequency response of the corresponding analog filter. 
 Let the transfer function of an analog filter be given 
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To demonstrate how an analog filter is digitized using the impulse invariant transformation, we rewritten this 
equation in its partial expansion, as 
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and id  is the location of the i-the pole. In writing this expression, we have assumed that the order of the numerator 

M is less that the order of the denominator N and that all the poles of ( )AH p are simple. The assumption that M<N 
must be valid for the system to be digitized – otherwise the aliasing in the digital system would be intolerable. If the 
poles of ( )AH p  are not simple, the discussion in this section can be appropriately modified. 

 The impulse response of the analog filter ( )Ah t  with transfer function ( )AH p is of the form 
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The corresponding digital impulse response h(n) can be written  as the sampled version of ( )Ah t ; i.e. 
 

1
( ) i

N
d nT

i
i

h n c e−

=
= ∑  

The z-transform of h(n) is given by 
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Interchanging orders of summation and summing over n gives  
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The inner sum in the previous expressions converges because 0kp < and yields 
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Therefore, the transfer (system) function of the digital filter is  
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By comparing H(z) and ( )AH p  it can be seen that H(z) is obtained from ( )AH p by using the mapping relation 
 

11 i

i i
d T

i

c c
p d e z− −→

+ −
 

 
for simple poles. When id  is complex, then ic  is also complex. Since ( )Ah t is real, this implies that there is also a 

pole at id  with ic . By combining these terms, we obtain the terms of the forms 
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where 
 

i i i i i id j and c g jhσ ω= + = + . 
 
 With the above given forms for the transfer (system) function H(z), the IIR filter is easily realized as a 
parallel bank of single-pole filters. If some of poles are complex valued, they may be paired together and combined 
to form two-pole filter sections. In addition, two factors containing real-valued poles may be combined to form two-
pole filter. Consequently, the resulting filter may be realized as a parallel bank of two-pole filter. 

We should recall that when a continuous time signal ( )Ah t  with spectrum ( )AH F  is sampled at a rate 

1/SF T=  samples per second, the spectrum of the sampled signal is the periodic repetition of the scaled spectrum 

( )S AF H F  with period SF . Specifically, the relationship is 
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where / Sf F F=  is normalized frequency. Aliasing occurs if the sampling rate SF  is less then twice the highest 

frequency contained in ( )AH F . The next figure depicts the frequency response of a low-pass analog filter and the 
frequency response of the corresponding digital filters. 
 It is clear that the digital filter with frequency response ( )H ω  will possess the frequency response 
characteristics of the corresponding analog filter if the sampling interval T is selected sufficiently small to avoid 
completely or minimize the effects of aliasing. It is also clear that the impulse invariance method is inappropriate for 
designing high-pass filters or stop-band filter due to spectrum aliasing that results from the sampling process. 
 To investigate the mapping between the z-plane and the p-plane implied by the sampling process, we rely 
on a generalization of the last expression which relates z-transform of h(n) to the Laplace transform of ( )Ah t . This 
relationship is 
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Note that when p j= Ω ,  
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reduces to  
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where the factor of j is suppressed in our notation. 
 The general characteristic of the mapping 
 

pTz e=  
 
can be obtained by substitution p jσ= + Ω  and expressing the complex variable z in the polar form as jz re ω= .  
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
With these substitutions we can expressed as  
 

( )j j T T j Tz re e e eω σ σ+ Ω Ω= = =  
 
Clearly, we must have  
 

Tr eσ=    Tω = Ω      /TωΩ =  
 
Consequently, 0σ <  implies that 0<r<1 and 0σ >  implies that r>1. When 0σ = , we have r=1. Therefore, the 
left-half of p-plane is mapped inside the unite circle in z-plane and right-half of p-plane is mapped into points that 
fall outside the unit circle in z-plane. This is one of the desirable properties of a good p-z mapping (transformation).   
 Also jΩ -axis is mapped into the unit circle in z-plane as indicates above. However, the mapping of jΩ -
axis into the unit circle is not one-to-one. Since ω  is unique over the range ,π π< − > , the mapping Tω = Ω  
implies that interval / /T Tπ π− ≤ Ω ≤  maps into the corresponding values of π ω π− ≤ ≤ . Furthermore, the 
adjacent strips - frequency interval / 3 /T Tπ π≤ Ω ≤ also maps into the interval π ω π− ≤ ≤  and, in general, 
so does the interval (2 1) / (2 1) /k T k Tπ π− ≤ Ω ≤ + , when k is integer. Thus, the mapping from the analog 
frequency Ω  to the frequency variable ω  in the digital domain is many-to-one, which simply reflects the effects of 
aliasing due to sampling. The next figures illustrate the mapping from p-plane to z-plane. Text: The mapping of 

pTz e= maps strips of the width 2 / ( 0)T forπ σ <  into the p-plane into points in the unit cirle.  
From these figures it is clear that for the frequency responses of an analog filters and equivalent digital filter 

obtained by impulse invariant transformation to correspond, the analog filter must be bandlimited to the range 
/ /T Tπ π− ≤ Ω ≤ . This generally requires that the analog filter be suitably bandlimited prior to transformation. 
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Mapping: pTz e=
3.1. Summary  
Digital filter specification: Pω , Sω , 1δ  and 2δ . 

Transformation of requirements to a digital filter to an analog filter: /TωΩ =  ( p PωΩ → , S SωΩ → , 1δ  

and 2δ ). 

Analog filter design: 
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mments on scaling factor T  application:  
The frequency response of the filter obtained by impulse invariant transformation is given by  
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it is desired to get a digital filter with the same gain as the analog filter possesses, it is necessary to transform the 
pression for H(z) given by   
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5.4. The Matched Z-Transform 
 Another method for converting an analog filter into an digital filter is to map the poles and zeros of 

( )AH p directly into poles and zeros in the z-plane. Suppose that the system function of the analog filter is expressed 
in the factored form 
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where kz  are the zeros and kp  are the poles of the filter. Then the transfer (system) function for digital filter is  
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where T is sampling interval. Thus each factor (p-a) in ( )AH p  is mapped into the factor ( )11 aTe z−−  i.e. 

 
11 aTp a e z−− → −  

 
This mapping is called the matched z-transformation. 
 We observe that the poles obtained from the matched z-transformation are identical to the poles obtained 
with the impulse invariance method. However, the two techniques result in different zero positions. 
 To preserve the frequency response characteristics of an analog filter, the sampling interval in the matched 
z-transformation must be selected properly to yield the pole and zero locations at the equivalent position in the z-
plane. Thus aliasing must be avoided by selecting T sufficiently small. 
 Although the matched z-transformation is easy to apply, there are many cases when it is not a suitable 
mapping. E.g. if the analog system has zeros with center frequencies greater that half the sampling frequency, their z-
plane positions will be greatly aliased. Another case where the matched z-transformation is unsuitable is where the 
continuous transfer function is an all-pole system. Then the digital transfer function is an all-pole system that, in any 
cases, does not adequately represent the desired continuous system. In general, use of impulse transformation is to be 
preferred over the matched z-transformation. 
 
 
 
 



 

 

5.5. Bilinear Transformation Method 
 The IIR filter design techniques described in the previous sections have severe limitations in that they are 
appropriate only for low-pass filter and limited class of band-pass filters. This limitations is a result of the mapping 
that converts points in the p-plane to corresponding points in the z-plane. 
 In this section we describe a mapping from the p-plane to the z-plane, called the bilinear transformation, that 
overcomes the limitation of the other three design methods described previously.  The bilinear transformation is a 
conformal mapping that transforms jΩ -axis into the unit circle in the z-plane only once, thus avoiding aliasing of 
frequency components. Furthermore, all points of left-half p-plane are mapped inside the unit circle in the z-plane 
and all points in the right-half p-plane are mapped into corresponding points outside the unit circle in the z-plane. 
 The bilinear transformation can be linked to the trapezoidal formula for numerical integration. For example, 
let us consider an analog linear filter with transfer function 
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This system is also characterized by the differential equation 
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Instead of substituting a finite difference for the derivative, suppose that we integrate the derivative and approximate 
the integral by the trapezoidal formula: 
 

( )[ ]
2

1

2 1 2 1
1( ) ( ) ( )
2

x

x

f x dx x x f x f x= − +∫  

 
Thus 
 

0

0( ) '( ) ( ) '( ) ( )
t nT

t nT T

y t y d y t y d y nT Tτ τ τ τ
−

= + = + −∫ ∫  

 
where '( )y t denotes the derivative of ( )y t . The approximation of the previous integral by trapezoidal formula is  
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Now the differential equation evaluated in t nT=  
 

'( ) ( ) ( )y nT ay nT bx nT= − +  
 
We use this expression to substitute for derivative and thus obtain a difference equation for the equivalent discrete-
time system. Then, we obtain the following results: 
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The z-transform of  this equation is  
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Consequently, the system function of the equivalent digital filter is 
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Clearly, the mapping from p-plane to the z-plane is 
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This is called the bilinear transformation. Similarly, the mapping from the z-plane is the mapping to p-plane is 
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 Although our derivation of the bilinear transformation was performed for a first-order differential equation, 
it holds in general, for N-th order differential equation. 
 To investigate the characteristics of the bilinear transformation, let  
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When p j= Ω  
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From this equation it can be found 
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Then, we can see that the imaginary jΩ -axis is mapped into unit circle. It is also interesting to note that the bilinear 
transformation maps the point Ω = ∞  into the point 1z = −  and the point 0Ω =  into the point 1z = . Between 
these limits the angle of z varies monotonically from 0 .toπ The relationship between frequency variables in the two 
domains is illustrated in the next figure. We observe that entire range in Ω  is mapped only once into range 

π ω π− ≤ ≤ , the aliasing errors inherent with impulse invariant transformations are eliminated. However, the 
mapping is highly nonlinear. We observe a frequency compression or frequency warping, as it is usually called, due 
to the nonlinearity of the arctangent function.  
 If  p jσ= + Ω  we obtain for z 
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Then, when 0σ <  (left-half p-plane), we find 1z < (inside unit circle) and   0σ >  (right-half p-plane), we find 

1z > (outside unit circle). The next figures illustrate the mapping from p-plane to z-plane. 
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1. Summary 

he overall bilinear transformation method of design is as follows: 

or each of the desired critical digital frequencies (e.g. Pω  and Sω ), determine the corresponding analog 
equencies, using  
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 ( )AH p to obtain the desired digital filter transfer function. 
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