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Abstract – The paper presents a new optimized 
implementation of IIR biquad filtration routine for high-
performance 16-bit fixed point Blackfin DSPs. The core 
of hand-optimized routine uses both MAC units available 
in Blackfin architectures and in contrary to other 
available solutions it does not produce pipeline stalls in 
the DSP control and MAC units. The proposed core is the 
fastest currently available IIR biquad code for Blackfin 
ADSP-BF535 DSP. The core reaches asymptotically a 
theoretical minimum of 2.5 cycles per biquad and 
provides features that are not currently available in 
VisualDSP++ supporting DSP library functions. 

The functionality of the proposed implementation was 
fully tested in VisualDSP++ simulator and evaluated with 
ADSP-BF535EZ-Kit hardware.  

Index terms – IIR, biquad, library function, 
VisualDSP++, pipeline stalls 

1 Introduction 

Architectures of all typical Digital Signal Processors 
(DSPs) have been optimized at least for standard signal 
processor algorithms – Finite Impulse Response (FIR), 
Infinite Impulse Response (IIR) and Fast Fourier 
Transform (FFT). It is well-known that practical 
implementation of IIR filtration on fixed-point DSPs 
requires proper decomposition of transfer function in 
order to overcome finite-precision problems [1]. 

A biquad realization of IIR filters is one of the best 
solutions for implementation of many practical IIR 
filters on typical DSPs. Older DSPs have quite simple 
data-paths with only 1 single-cycle Multiply and 
Accumulate (MAC) unit and typically use quite simple 
pipelining only in their control units (CUs). A general 
biquad uses 5 coefficients. The core of biquad 
implementation can reach a theoretical minimum of 5 
cycles/biquad for some older DSP with one MAC unit 
(e.g. Motorola  DSP5600x). 

Modern fixed DSPs generally use more complicated 
data-paths and deeper pipelining in CU as well as in 
data-paths. Analog Devices Blackfin DSPs [2] are a 
typical example of modern fixed-point DSP with 2 
MAC units.  A theoretical performance of biquad IIR 
implementation is thus 2.5 cycle/biquad for 2 MAC 
Blackfin architecture. Currently available IIR routines 
in Blackfin VisualDSP++ development tool [3] do not 
reach this performance and have other serious 
limitations. It was not known if relatively complex 

fully interlocked Blackfin pipeline allows to reach the 
theoretical limit for IIR filter implementation. The 
paper presents the first known IIR biquad 
implementation that asymptotically reaches this 
theoretical limit in Blackfin ADSP-BF535 DSP. 

2 Main Features of the Blackfin Architecture 

The ADSP-BF5xx (Blackfin) [2] is a family of 16-bit 
fixed-point dual-MAC processors from Analog 
Devices. The ADSP-BF5xx combines features 
common for low-power DSPs with features 
traditionally associated with general-purpose RISC 
processors. The ADSP-BF5xx is based on Micro 
Signal Architecture (MSA) instruction set architecture 
jointly developed by Analog Devices and Intel. There 
are two generations of Blackfin processors which have 
slightly different instruction sets and 
microarchitectures [2]. Due to these architectural 
differences, the two generations are only partly 
assembly-code compatible. The first generation 
Blackfin processor, the ADSP-BF535, achieves a clock 
speed of 350 MHz at 1.6 volts. Second-generation 
Blackfin processors include the ADSP-BF531,2,3,4 
ADSP-BF536,7 and ADSP-BF561. The second-
generation parts operate at up to 750 MHz at 1.45 
volts. Next subsections summarize features of Blackfin 
DSPs that are relevant to description of IIR 
implementation. Further information can be found in 
the corresponding manuals and application notes [4, 5].  

2.1 Data Paths 
The ADSP-BF5xx contains two fixed-point data 

paths, two address generation units, and a program 
sequencer. It also includes a data register file of eight 
32-bit registers R0-7, as well as two 40-bit 
accumulators A0,1. The ADSP-BF5xx uses a RISC 
like load/store architecture: the data paths generally 
take inputs from and returns results to the data register 
file or the accumulators. 

2.2 Memory Subsystem 
Blackfin DSPs support a hierarchical memory model 

with different performance and size parameters, 
depending on the memory location within the 
hierarchy. The fastest memory, Level (L1), which 



includes instruction, data, and scratchpad memory, is 
accessible in a single cycle. L2 memories, which 
include on-chip SRAM and off-chip mapping to 
synchronous, asynchronous, and PCI devices, provide 
much larger memory spaces, but with higher latencies. 

The ADSP-BF5xx core can perform one instruction 
read and two data transfers in each cycle. Each data 
transfer can be 8, 16 or 32 bits wide. Both data 
transfers can access the same data bank if they use 
different sub-banks, but only one of the transfers can 
be a store. If data is arranged as 16-bit pairs in 
memory, the ADSP-BF5xx can transfer four 16-bit 
values in each cycle.  

The ADSP-BF5xx address space is byte addressable. 
However, instructions must be aligned on 16-bit 
boundaries, and loads and stores must maintain the 
appropriate alignment for the transfer: 8-, 16-, and 32-
bit transfers must be aligned on 8-, 16-, and 32-bit 
boundaries, respectively. 

2.3 Control Unit 
• Interlocked Pipeline  
The first-generation ADSP-BF535 pipeline has 8 

stages, while the second-generation ADSP-BF5xx 
pipeline has 10 stages. Both generations feature fully 
interlocked pipelines, so that data hazards do not cause 
unexpected results. However, some data hazards are 
resolved by stalling the processor. Data forwarding has 
been improved in the second-generation 
microarchitecture, some stalls that result from data 
hazards on ADSP-BF535 have been removed by the 
improved forwarding mechanisms. The ADSP-BF5xx 
uses static branch predicition for all conditional 
branches. Instructions generally execute in one cycle in 
the absence of memory access-related delays and 
pipeline stalls. The most significant exceptions are the 
jump, call, and most return instructions, which require 
four or more cycles. 

• Load/Store Concept  
The Blackfin DSP architecture supports a RISC-like 

concept of “load/store machine”. This refers to the 
characteristic in RISC architectures of intentionally 
separating memory operations (load and stores) from 
the arithmetic functions that use targets of memory 
operations. This prevents memory operations 
(particularly instructions that access off-chip memory 
or I/O devices and often take multiple cycles to 
complete) from stalling the processor thus allowing an 
instruction execution rate of one instruction per cycle. 

The separation of load operations from their 
associated arithmetic functions allows compilers and 
assembly language programmers to place unrelated 
instructions between the load and its dependant 
instruction(s) [5]. These unrelated instructions execute 
in parallel while the processor waits for the memory 
system to return data. If a value arrives before the 
dependant operation reaches the execution stage of the 
pipeline, the operation completes in one cycle. 

3 Available IIR filter functions for Blackfin DSP 

VisualDSP++ is a standard integrated software 
development tool [3]. Key features include the native 
C/C++ compiler, C/C++ libraries, advanced graphical 
plotting tools, statistical profiling, and the 
VisualDSP++ Kernel. C/C++ DSP library [6] include 
many optimized block- processing functions. Currently 
available IIR functions included in the optimized DSP 
library:  

• IIR filter based on the Direct Form II (DF II) 
biquads 

It is available as a standard C-library function 
void iir_fr16(const fract16 x[], fract16 y[], int Ni, 

               iir_state_fr16 *s); 
in all versions of VisualDSP++. The core of iir_fr16 
function implements a standard biquad with the 
transfer function ( 1, 2,i B= … )  

( )
1 2

0 1 2
1

1 21

i i i

i i i

b b z b z
H z

a z a z 2

− −

− −

+ +
=

+ +
 (1) 

as shown in Fig.1. 
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Fig.1 Direct form II biquad implementation 

The iir_fr16 function increases implementation 
efficiency by passing 2 input samples through biquad 
cascade in parallel. The core of the iir_fr16 function 
requires [6] 

3 eN B∼  (2) 

cycles, where e  is an even number of input samples 
and is a number (can be even or odd) of biquad 
sections. It is clear that it does not reach the theoretical 
limit. Moreover, the iir_fr16 function has a serious 
practical limitation. It supports only biquad 
coefficients , 2 , 0 , 1 , 2  from the fractional 
interval 

N
B

1
ia ia ib ib ib
)1,1− . It is well-known that stable biquads 

can have ( )1 2,2ia ∈ −  [1] and thus it cannot be used for 
implementation of many practical IIR filters. 

• IIR filter based on Direct Form I  (DF I) 
The latest version of C/C++ DSP library 

(VisualDSP++ v.4.0, February 2005) contains also 
Direct Form I (DF I) based IIR function  

iirdf1_fr16(const fract16 x[], fract16 y[], int n,   
                    iirdf1_state_fr16  *s);  ) 
that implements the transfer function 
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by using scaled coefficients 1 1 /A a S= , , 
as shown in Fig.2. 
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Fig.2 Direct form I IIR filter implementation 

The proper scaling factor 2scalS =  ensures that none 
of stored coefficients is outside the fractional )1,1−  
interval. The core of the iirdf1_fr16 function requires 
[6]  

2eN N N B=∼ e

B

B
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 (4) 

cycles, where e  is an even number of input samples 
and . Probably the main motivation, why this 
function has been included into the latest DSP library 
was an attempt to compensate limitations of biquad 
based iir_fr16 function. Although from (4) it seems 
that iirdf1_fr16 is very efficient, it cannot be used for 
many practical IIR filters. It is well known that finite 
word-length effects of 16-bit fixed-point arithmetic 
cause instability of IIR based on DF I [1].  

N
2N =

4 Optimized IIR function 

The proposed optimized IIR function iir_fr16_v2 is 
based on a non-canoical implementation of biquad 
using scaled coefficients 1 1 , 2 2 , 

2 2  shown in Fig.3. It implements the 
transfer function (1) for  by using fixed 
scaling  in each biquad. 
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Fig.3 Optimized non-canonic biquad implementation  
 
The core of the iirdf1_fr16_v2 function requires  

2.5 e eN B∼  (5) 

cycles, where e  is an even number of input samples 
and e  is an even number of biquads. The efficiency 
of the proposed implementation is based on: 

N
B

- Parallel passing of 2 input samples through biquad 
cascade. 

- Loop unrolling of inner IIR filer loop that contains 
two (referred as odd and even) biquads.  

- Efficient use of special scaling mode (S2RND) for 
implementation of post-multiplication by factor 

2iS =  in each biquad. Although this feature is quite 
commonly used with other DSPs (e.g. Motorola 
DSP56xxx) it was not used in Analog Devices fixed-
point DSP IIR library functions. 

- Extensive hand optimization of inner IIR filter loop 
code. Optimization had to resolve several pipeline 
stalls that occur in relatively complex BF-535 
pipeline [5]. The final code of optimized inner loop 
is shown in Tab.1 [7] (understanding of this code 
requires a very good knowledge of Blackfin DSP 
architecture and its instruction set). It requires 
exactly 10 cycles per 2 samples and 2 biquad 
sections. This is the theoretical minimum for 2-
MAC DSP architecture. 

The code has the following features: 
- It is optimized for an even number of biquads. 
- The code must be properly aligned (by .align8 

directive) on the 8-byte code memory position. 
- Code and data must be located in the L1 code and 

both data memories in order to reach the optimum 
performance. 

- A short initialization code (step 0 in Tab.1) must be 
used before the inner loop (steps 1-10). 

- It can implement all stable IIR filters. 
- Final code is provided as C library function 

iir_fr16_v2 with the same prototype as iir_fr16.  

5 Experimental results 

The proposed optimized implementation was fully 
tested with available software and hardware 
development tools. An influence of 16-bit fixed point 
arithmetic was tested in VisualDSP++ simulator. Fig.4 
shows difference of iir_fr16_v2 computed in 
VisualDSP++ simulator and reference Matlab 
implementation for 8-th order elliptic band-pass filter 
with 48kHzsf = , 1 , 6kHzpf = 1 9kHzpf = , 

1 5.3kHzsf = , 1 9.7 kHzsf = , 0.1dBpσ = , 80dBsσ =  
and 1.15quant =  designed by Systolix filter design 
package [7]. As an input signal a uniformly distributed 
full scale white random signal was used. Note that the 
tested filter cannot be implemented by available 
iir_fr16 function (many feedback coefficients are 
outside the interval )1,1− ) or iirdf1_fr16 (instability 
of DF I structure for 16-bit arithmetic). 

It was found out that VisualDSP++ simulator does 
not provide reliable results for all code alignments in 
the code memory. For this reason the number of cycles 
was confirmed by direct measurements on BF-535 EZ-
Kit hardware by using internal Blackfin hardware cycle 
counters. These measurements confirmed validity of 
(5) for optimized iirdf1_fr16_v2 internal loop code. 



 
 
 
 
 
 
 
 
 
 
 
Fig.4 Precision of iir_fr16_v2 implementation 

5 Conclusions 

The proposed new biquad IIR filter implementation 
for Blackfin ADSP BF-535 DSP significantly improves 
currently available library functions for IIR filtration. It 
solves all practical aspects of IIR implementation on 
Blackfin DSP and asymptotically reaches the 
theoretical limit of dual-MAC Blackfin DSP 
architecture. It is currently the fastest known IIR 
implementation for Blackfin BF-535 core and 
demonstrates that also relatively complex interlocked 
pipelined Blackfin architecture can execute IIR filter 
without pipeline stalls. 

 
  Table1 Inner loop of optimized iir_fr16_v2 code 
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x 10-4 Error of 16-bit Blackfin 21535 IIR filter

Discrete time

E
rro

r

step accum. A0 accum. A1 register contents  pointer position 
initialization code   

0.  b2*x-2 
+b1*x-1 

R0: b1                            R1:  b2 -a2 
R2: x1  x0                     R3:  x-1  y-2 

R4:            R5: 
R6:            R7: 

I1 → x-1 
I2 → b0 

 r0.l=w[i2++]; r1.l=w[i2++] || r2.h=w[i0++]; r1.h=w[i2++] || r2.l=w[i0++]; 
r3=[i1++]; a1=r1.l*r3.h || i1+=2; a1+=r0.l*r3.l || r3.h=w[i1--]; i1-=4; 

 

code for implementation of odd biquads   
1. b2*x-1 -a2*y-2 R0: b1 b0                      R1:  b2 -a2 

R2: [x1 x0]->x-1 x-2   R3:  x-1  y-2 
R4:            R5: 
R6:            R7: 

incr. I2 by 2 bytes 
incr. I1 by 4 bytes 

 a1+=r1.h*r3.h, a0=r1.l*r3.l || r0.h=w[i2++] || [i1++]=r2;  
2. +b1*x0 +b0*x0 R0: b1  b0                    R1: -a1  -a2 

R2: x1  y-1                   R3: x-1  y-2 
R4:            R5: 
R6:            R7: 

incr. I2 by 2 bytes 
incr. I1 by 2 bytes 

 a1+=r0.h*r2.h, a0+=r0.l*r2.h || r1.l=w[i2++] || r2.h=w[i1++];  
3. -a2*y-1 [-a1*y-1]s2rnd R0:  b1n b0                 R1:  -a1  -a2 

R2:  x1  y-1                R3:  x-1  y-2 
R4: y-2 [y0] R5: 
R6:             R7: 

incr. I2 by 2 bytes 
incr. I1 by 2 bytes 

 r4.h=(a1+=r1.l*r2.h),a0+=r1.h*r2.h (s2rnd) ||r0.l=w[i2++]||r4.l=w[i1++];  
4. +b0*x1 b1n*x-1n R0: b1n b0                  R1:  -a1  b2n 

R2:  x1  y-1                R3:  y-1n  y-2n 
R4: y-2n  y0 R5: 
R6:             R7: 

decr. I1 by 4 bytes 
incr.  I2 by 2 bytes 

 a1=r0.l*r2.h, a0+=r0.h*r2.l || r1.h=w[i2++] || r3=[i1--];  
5. [-a1*y0]s2rnd +b2n*x-2n R0:  b1n  b0               R1:  -a2n  b2n 

R2:  x1  y-1                R3:  x-1n y-2n 
R4: [y1]  y0  R5: 
R6:             R7: 

incr. I2 by 2 bytes 
I1 → x-1n     I2 → b0n 

 a1+=r1.h*r4.l, r4.l=(a0+=r1.l*r4.h) (s2rnd) || r1.l=w[i2++] || r3.l=w[i1];  
code for implementation of even biquads   

6. b2*x-1 -a2*y-2 R0: b1 b0                   R1: -a2 b2 

R2:                     R3: x-1  y-2 
R4: [x1 x0]->x-1 x-2 
R5:   R6:   R7: 

incr. I2 by 2 bytes 
incr. I1 by 4 bytes 

 a1+=r1.l*r3.h, a0=r1.h*r3.l || r0.h=w[i2++] || [i1++]=r4;  
7. +b1*x0 +b0*x0 R0: b1  b0                 R1: -a2  -a1 

R2:                     R3: x-1  y-2 
R4: x1  y-1  R5: 
R6:            R7: 

incr. I2 by 2 bytes 
incr. I1 by 2 byets 

 a1+=r0.h*r4.h, a0+=r0.l*r4.h || r1.h=w[i2++] || r4.h=w[i1++];  
8. -a2*y-1 [-a1*y-1]s2rnd R0: b1n  b0               R1: -a2  -a1 

R2: y-2 [y0]         R3: x-1  y-2 
R4: x1 y-1  R5: 
R6:           R7: 

incr. I2 by 2 bytes 
incr. I1 by 2 bytes- 

 r2.h=(a1+=r1.h*r4.h),a0+=r1.l*r4.h (s2rnd) ||r0.l=w[i2++]||r2.l=w[i1++];  
9. +b0*x1 b1n*x-1n R0: b1n  b0              R1: b2n -a1 

R2: y-2 y0                R3: y-1n  y-2n 
R4:            R5: 
R6:            R7: 

decr. I1 by  4 bytes 
incr. I2 by 2 bytes 

 a1=r0.l*r4.h, a0+=r0.h*r4.l || r1.l=w[i2++] || r3=[i1--];  
10. [-a1*y0]s2rnd +b2n*x-2n R0: b1n  b0              R1: b2n  -a2n 

R2: [y1]  y0             R3: x-1n y-2n 
R4:            R5: 
R6:            R7: 

incr. I2 by 2 bytes 
I1 → x-1nn  I2 → b0nn 

 a1+=r1.l*r2.l, r2.l=(a0+=r1.h*r2.h) (s2rnd) || r1.h=w[i2++] || r3.l=w[i1];  


