
DSP-MCOM 2005
Košice, Slovak republic
13-14 September 2005

An Implementation of High Performance IIR Filtration on 2-MAC
Blackfin DSP Architecture

Miloš Drutarovský
Department of Electronics and Multimedia Communications

Technical University of Košice
Park Komenského 13, 041 20 Košice

Slovak Republic
Milos.Drutarovsky@tuke.sk

Abstract – The paper presents a new optimized
implementation of IIR biquad filtration routine for high-
performance 16-bit fixed point Blackfin DSPs. The core
of hand-optimized routine uses both MAC units available
in Blackfin architectures and in contrary to other
available solutions it does not produce pipeline stalls in
the DSP control and MAC units. The proposed core is the
fastest currently available IIR biquad code for Blackfin
ADSP-BF535 DSP. The core reaches asymptotically a
theoretical minimum of 2.5 cycles per biquad and
provides features that are not currently available in
VisualDSP++ supporting DSP library functions.

The functionality of the proposed implementation was
fully tested in VisualDSP++ simulator and evaluated with
ADSP-BF535EZ-Kit hardware.

Index terms – IIR, biquad, library function,
VisualDSP++, pipeline stalls

1 Introduction

Architectures of all typical Digital Signal Processors
(DSPs) have been optimized at least for standard signal
processor algorithms – Finite Impulse Response (FIR),
Infinite Impulse Response (IIR) and Fast Fourier
Transform (FFT). It is well-known that practical
implementation of IIR filtration on fixed-point DSPs
requires proper decomposition of transfer function in
order to overcome finite-precision problems [1].

A biquad realization of IIR filters is one of the best
solutions for implementation of many practical IIR
filters on typical DSPs. Older DSPs have quite simple
data-paths with only 1 single-cycle Multiply and
Accumulate (MAC) unit and typically use quite simple
pipelining only in their control units (CUs). A general
biquad uses 5 coefficients. The core of biquad
implementation can reach a theoretical minimum of 5
cycles/biquad for some older DSP with one MAC unit
(e.g. Motorola DSP5600x).

Modern fixed DSPs generally use more complicated
data-paths and deeper pipelining in CU as well as in
data-paths. Analog Devices Blackfin DSPs [2] are a
typical example of modern fixed-point DSP with 2
MAC units. A theoretical performance of biquad IIR
implementation is thus 2.5 cycle/biquad for 2 MAC
Blackfin architecture. Currently available IIR routines
in Blackfin VisualDSP++ development tool [3] do not
reach this performance and have other serious
limitations. It was not known if relatively complex

fully interlocked Blackfin pipeline allows to reach the
theoretical limit for IIR filter implementation. The
paper presents the first known IIR biquad
implementation that asymptotically reaches this
theoretical limit in Blackfin ADSP-BF535 DSP.

2 Main Features of the Blackfin Architecture

The ADSP-BF5xx (Blackfin) [2] is a family of 16-bit
fixed-point dual-MAC processors from Analog
Devices. The ADSP-BF5xx combines features
common for low-power DSPs with features
traditionally associated with general-purpose RISC
processors. The ADSP-BF5xx is based on Micro
Signal Architecture (MSA) instruction set architecture
jointly developed by Analog Devices and Intel. There
are two generations of Blackfin processors which have
slightly different instruction sets and
microarchitectures [2]. Due to these architectural
differences, the two generations are only partly
assembly-code compatible. The first generation
Blackfin processor, the ADSP-BF535, achieves a clock
speed of 350 MHz at 1.6 volts. Second-generation
Blackfin processors include the ADSP-BF531,2,3,4
ADSP-BF536,7 and ADSP-BF561. The second-
generation parts operate at up to 750 MHz at 1.45
volts. Next subsections summarize features of Blackfin
DSPs that are relevant to description of IIR
implementation. Further information can be found in
the corresponding manuals and application notes [4, 5].

2.1 Data Paths
The ADSP-BF5xx contains two fixed-point data

paths, two address generation units, and a program
sequencer. It also includes a data register file of eight
32-bit registers R0-7, as well as two 40-bit
accumulators A0,1. The ADSP-BF5xx uses a RISC
like load/store architecture: the data paths generally
take inputs from and returns results to the data register
file or the accumulators.

2.2 Memory Subsystem
Blackfin DSPs support a hierarchical memory model

with different performance and size parameters,
depending on the memory location within the
hierarchy. The fastest memory, Level (L1), which

includes instruction, data, and scratchpad memory, is
accessible in a single cycle. L2 memories, which
include on-chip SRAM and off-chip mapping to
synchronous, asynchronous, and PCI devices, provide
much larger memory spaces, but with higher latencies.

The ADSP-BF5xx core can perform one instruction
read and two data transfers in each cycle. Each data
transfer can be 8, 16 or 32 bits wide. Both data
transfers can access the same data bank if they use
different sub-banks, but only one of the transfers can
be a store. If data is arranged as 16-bit pairs in
memory, the ADSP-BF5xx can transfer four 16-bit
values in each cycle.

The ADSP-BF5xx address space is byte addressable.
However, instructions must be aligned on 16-bit
boundaries, and loads and stores must maintain the
appropriate alignment for the transfer: 8-, 16-, and 32-
bit transfers must be aligned on 8-, 16-, and 32-bit
boundaries, respectively.

2.3 Control Unit
• Interlocked Pipeline
The first-generation ADSP-BF535 pipeline has 8

stages, while the second-generation ADSP-BF5xx
pipeline has 10 stages. Both generations feature fully
interlocked pipelines, so that data hazards do not cause
unexpected results. However, some data hazards are
resolved by stalling the processor. Data forwarding has
been improved in the second-generation
microarchitecture, some stalls that result from data
hazards on ADSP-BF535 have been removed by the
improved forwarding mechanisms. The ADSP-BF5xx
uses static branch predicition for all conditional
branches. Instructions generally execute in one cycle in
the absence of memory access-related delays and
pipeline stalls. The most significant exceptions are the
jump, call, and most return instructions, which require
four or more cycles.

• Load/Store Concept
The Blackfin DSP architecture supports a RISC-like

concept of “load/store machine”. This refers to the
characteristic in RISC architectures of intentionally
separating memory operations (load and stores) from
the arithmetic functions that use targets of memory
operations. This prevents memory operations
(particularly instructions that access off-chip memory
or I/O devices and often take multiple cycles to
complete) from stalling the processor thus allowing an
instruction execution rate of one instruction per cycle.

The separation of load operations from their
associated arithmetic functions allows compilers and
assembly language programmers to place unrelated
instructions between the load and its dependant
instruction(s) [5]. These unrelated instructions execute
in parallel while the processor waits for the memory
system to return data. If a value arrives before the
dependant operation reaches the execution stage of the
pipeline, the operation completes in one cycle.

3 Available IIR filter functions for Blackfin DSP

VisualDSP++ is a standard integrated software
development tool [3]. Key features include the native
C/C++ compiler, C/C++ libraries, advanced graphical
plotting tools, statistical profiling, and the
VisualDSP++ Kernel. C/C++ DSP library [6] include
many optimized block- processing functions. Currently
available IIR functions included in the optimized DSP
library:

• IIR filter based on the Direct Form II (DF II)
biquads

It is available as a standard C-library function
void iir_fr16(const fract16 x[], fract16 y[], int Ni,

 iir_state_fr16 *s);
in all versions of VisualDSP++. The core of iir_fr16
function implements a standard biquad with the
transfer function (1, 2,i B= …)

()
1 2

0 1 2
1

1 21

i i i

i i i

b b z b z
H z

a z a z 2

− −

− −

+ +
=

+ +
 (1)

as shown in Fig.1.

x(n)
ΣΣ

x

x

x

x

x

z
−1

z
−1

−a
i

1

−a
i

2

b
i

0

b
i

1

b
i

2

w
i(n)

w
i(n − 1)

w
i(n − 2)

y(n)

Fig.1 Direct form II biquad implementation

The iir_fr16 function increases implementation
efficiency by passing 2 input samples through biquad
cascade in parallel. The core of the iir_fr16 function
requires [6]

3 eN B∼ (2)

cycles, where e is an even number of input samples
and is a number (can be even or odd) of biquad
sections. It is clear that it does not reach the theoretical
limit. Moreover, the iir_fr16 function has a serious
practical limitation. It supports only biquad
coefficients , 2 , 0 , 1 , 2 from the fractional
interval

N
B

1
ia ia ib ib ib
)1,1− . It is well-known that stable biquads

can have ()1 2,2ia ∈ − [1] and thus it cannot be used for
implementation of many practical IIR filters.

• IIR filter based on Direct Form I (DF I)
The latest version of C/C++ DSP library

(VisualDSP++ v.4.0, February 2005) contains also
Direct Form I (DF I) based IIR function

iirdf1_fr16(const fract16 x[], fract16 y[], int n,
 iirdf1_state_fr16 *s);)
that implements the transfer function

()
1 2

0 1 2
1 2

1 21

N
N

IIR N
N

b b z b z b z
H z

a z a z a z

− − −

− − −

+ + + +
=

+ + + +
…
…

 (3)

by using scaled coefficients 1 1 /A a S= , ,
as shown in Fig.2.

…
/N NB b S=

x(n)

z
−1

z
−1

z
−1

z
−1

z
−1

z
−1

B0

B1

B2

BN

Σ

2scal

−A1

−A2

−AN

y(n)

x

x

x

x

x

x

x

x

Fig.2 Direct form I IIR filter implementation

The proper scaling factor 2scalS = ensures that none
of stored coefficients is outside the fractional)1,1−
interval. The core of the iirdf1_fr16 function requires
[6]

2eN N N B=∼ e

B

B
2

 (4)

cycles, where e is an even number of input samples
and . Probably the main motivation, why this
function has been included into the latest DSP library
was an attempt to compensate limitations of biquad
based iir_fr16 function. Although from (4) it seems
that iirdf1_fr16 is very efficient, it cannot be used for
many practical IIR filters. It is well known that finite
word-length effects of 16-bit fixed-point arithmetic
cause instability of IIR based on DF I [1].

N
2N =

4 Optimized IIR function

The proposed optimized IIR function iir_fr16_v2 is
based on a non-canoical implementation of biquad
using scaled coefficients 1 1 , 2 2 ,

2 2 shown in Fig.3. It implements the
transfer function (1) for by using fixed
scaling in each biquad.

/ 2i iA a= / 2i iA a=
/ 2i iB b=…

1, 2, , ei = …
2 iscal

iS = =

x(n)

z
−1

z
−1

z
−1

z
−1

B
i

0

B
i

1

B
i

2

Σ

2scali

−A
i

1

−A
i

2

y(n)

x

x

x

x

xx

Fig.3 Optimized non-canonic biquad implementation

The core of the iirdf1_fr16_v2 function requires

2.5 e eN B∼ (5)

cycles, where e is an even number of input samples
and e is an even number of biquads. The efficiency
of the proposed implementation is based on:

N
B

- Parallel passing of 2 input samples through biquad
cascade.

- Loop unrolling of inner IIR filer loop that contains
two (referred as odd and even) biquads.

- Efficient use of special scaling mode (S2RND) for
implementation of post-multiplication by factor

2iS = in each biquad. Although this feature is quite
commonly used with other DSPs (e.g. Motorola
DSP56xxx) it was not used in Analog Devices fixed-
point DSP IIR library functions.

- Extensive hand optimization of inner IIR filter loop
code. Optimization had to resolve several pipeline
stalls that occur in relatively complex BF-535
pipeline [5]. The final code of optimized inner loop
is shown in Tab.1 [7] (understanding of this code
requires a very good knowledge of Blackfin DSP
architecture and its instruction set). It requires
exactly 10 cycles per 2 samples and 2 biquad
sections. This is the theoretical minimum for 2-
MAC DSP architecture.

The code has the following features:
- It is optimized for an even number of biquads.
- The code must be properly aligned (by .align8

directive) on the 8-byte code memory position.
- Code and data must be located in the L1 code and

both data memories in order to reach the optimum
performance.

- A short initialization code (step 0 in Tab.1) must be
used before the inner loop (steps 1-10).

- It can implement all stable IIR filters.
- Final code is provided as C library function

iir_fr16_v2 with the same prototype as iir_fr16.

5 Experimental results

The proposed optimized implementation was fully
tested with available software and hardware
development tools. An influence of 16-bit fixed point
arithmetic was tested in VisualDSP++ simulator. Fig.4
shows difference of iir_fr16_v2 computed in
VisualDSP++ simulator and reference Matlab
implementation for 8-th order elliptic band-pass filter
with 48kHzsf = , 1 , 6kHzpf = 1 9kHzpf = ,

1 5.3kHzsf = , 1 9.7 kHzsf = , 0.1dBpσ = , 80dBsσ =
and 1.15quant = designed by Systolix filter design
package [7]. As an input signal a uniformly distributed
full scale white random signal was used. Note that the
tested filter cannot be implemented by available
iir_fr16 function (many feedback coefficients are
outside the interval)1,1−) or iirdf1_fr16 (instability
of DF I structure for 16-bit arithmetic).

It was found out that VisualDSP++ simulator does
not provide reliable results for all code alignments in
the code memory. For this reason the number of cycles
was confirmed by direct measurements on BF-535 EZ-
Kit hardware by using internal Blackfin hardware cycle
counters. These measurements confirmed validity of
(5) for optimized iirdf1_fr16_v2 internal loop code.

Fig.4 Precision of iir_fr16_v2 implementation

5 Conclusions

The proposed new biquad IIR filter implementation
for Blackfin ADSP BF-535 DSP significantly improves
currently available library functions for IIR filtration. It
solves all practical aspects of IIR implementation on
Blackfin DSP and asymptotically reaches the
theoretical limit of dual-MAC Blackfin DSP
architecture. It is currently the fastest known IIR
implementation for Blackfin BF-535 core and
demonstrates that also relatively complex interlocked
pipelined Blackfin architecture can execute IIR filter
without pipeline stalls.

 Table1 Inner loop of optimized iir_fr16_v2 code

Acknowledgment: The author wish to thank Analog
Devices, Inc. for providing software and hardware
development tools used within this project.

0 100 200 300 400 500 600 700 800 900 1000
-6

-4

-2

0

2

4

References
[1] B. Porat, A Course in Digital Signal Processing, John

Wiley & Sons, New York, 1997.
[2] ”A BDTI Analysis of the Analog Devices ADSP-BF5xx”,

Berkeley Design Technology, Inc., pp.1-5,
www.analog.com/processors/processors/blackfin/pdf/blac
kfin_summary.pdf.

[3] “VisualDSP++”, www.analog.com.

[4] www.analog.com/processors/processors/blackfin/.
[5] “ADSP-BF535 Blackfin Processor Multi-cycle

Instructions and Latencies”, App. Note EE-171,
May 13, 2003, pp.1-15, www.analog.com.

[6] “VisualDSP++ 4.0 C/C++ Compiler and Library
Manual for Blackfin Processors”, Revision 3.0,
January 2005.

[7] M. Kráľ and M. Nemčík, “Optimization of IIR
filtration on ADSP21535”, Semestral project,
KEMT TU Košice, June 2004, pp.1-25, (in Slovak).

[8] “Filter Express v.5.1”, www.systolix.com.

x 10-4 Error of 16-bit Blackfin 21535 IIR filter

Discrete time

E
rro

r

step accum. A0 accum. A1 register contents pointer position
initialization code

0. b2*x-2
+b1*x-1

R0: b1 R1: b2 -a2
R2: x1 x0 R3: x-1 y-2

R4: R5:
R6: R7:

I1 → x-1
I2 → b0

 r0.l=w[i2++]; r1.l=w[i2++] || r2.h=w[i0++]; r1.h=w[i2++] || r2.l=w[i0++];
r3=[i1++]; a1=r1.l*r3.h || i1+=2; a1+=r0.l*r3.l || r3.h=w[i1--]; i1-=4;

code for implementation of odd biquads
1. b2*x-1 -a2*y-2 R0: b1 b0 R1: b2 -a2

R2: [x1 x0]->x-1 x-2 R3: x-1 y-2
R4: R5:
R6: R7:

incr. I2 by 2 bytes
incr. I1 by 4 bytes

 a1+=r1.h*r3.h, a0=r1.l*r3.l || r0.h=w[i2++] || [i1++]=r2;
2. +b1*x0 +b0*x0 R0: b1 b0 R1: -a1 -a2

R2: x1 y-1 R3: x-1 y-2
R4: R5:
R6: R7:

incr. I2 by 2 bytes
incr. I1 by 2 bytes

 a1+=r0.h*r2.h, a0+=r0.l*r2.h || r1.l=w[i2++] || r2.h=w[i1++];
3. -a2*y-1 [-a1*y-1]s2rnd R0: b1n b0 R1: -a1 -a2

R2: x1 y-1 R3: x-1 y-2
R4: y-2 [y0] R5:
R6: R7:

incr. I2 by 2 bytes
incr. I1 by 2 bytes

 r4.h=(a1+=r1.l*r2.h),a0+=r1.h*r2.h (s2rnd) ||r0.l=w[i2++]||r4.l=w[i1++];
4. +b0*x1 b1n*x-1n R0: b1n b0 R1: -a1 b2n

R2: x1 y-1 R3: y-1n y-2n
R4: y-2n y0 R5:
R6: R7:

decr. I1 by 4 bytes
incr. I2 by 2 bytes

 a1=r0.l*r2.h, a0+=r0.h*r2.l || r1.h=w[i2++] || r3=[i1--];
5. [-a1*y0]s2rnd +b2n*x-2n R0: b1n b0 R1: -a2n b2n

R2: x1 y-1 R3: x-1n y-2n
R4: [y1] y0 R5:
R6: R7:

incr. I2 by 2 bytes
I1 → x-1n I2 → b0n

 a1+=r1.h*r4.l, r4.l=(a0+=r1.l*r4.h) (s2rnd) || r1.l=w[i2++] || r3.l=w[i1];
code for implementation of even biquads

6. b2*x-1 -a2*y-2 R0: b1 b0 R1: -a2 b2

R2: R3: x-1 y-2
R4: [x1 x0]->x-1 x-2
R5: R6: R7:

incr. I2 by 2 bytes
incr. I1 by 4 bytes

 a1+=r1.l*r3.h, a0=r1.h*r3.l || r0.h=w[i2++] || [i1++]=r4;
7. +b1*x0 +b0*x0 R0: b1 b0 R1: -a2 -a1

R2: R3: x-1 y-2
R4: x1 y-1 R5:
R6: R7:

incr. I2 by 2 bytes
incr. I1 by 2 byets

 a1+=r0.h*r4.h, a0+=r0.l*r4.h || r1.h=w[i2++] || r4.h=w[i1++];
8. -a2*y-1 [-a1*y-1]s2rnd R0: b1n b0 R1: -a2 -a1

R2: y-2 [y0] R3: x-1 y-2
R4: x1 y-1 R5:
R6: R7:

incr. I2 by 2 bytes
incr. I1 by 2 bytes-

 r2.h=(a1+=r1.h*r4.h),a0+=r1.l*r4.h (s2rnd) ||r0.l=w[i2++]||r2.l=w[i1++];
9. +b0*x1 b1n*x-1n R0: b1n b0 R1: b2n -a1

R2: y-2 y0 R3: y-1n y-2n
R4: R5:
R6: R7:

decr. I1 by 4 bytes
incr. I2 by 2 bytes

 a1=r0.l*r4.h, a0+=r0.h*r4.l || r1.l=w[i2++] || r3=[i1--];
10. [-a1*y0]s2rnd +b2n*x-2n R0: b1n b0 R1: b2n -a2n

R2: [y1] y0 R3: x-1n y-2n
R4: R5:
R6: R7:

incr. I2 by 2 bytes
I1 → x-1nn I2 → b0nn

 a1+=r1.l*r2.l, r2.l=(a0+=r1.h*r2.h) (s2rnd) || r1.h=w[i2++] || r3.l=w[i1];

