
1

10-1 a

Section 10Section 10

Timers
and

Programmable Flags

2

10-2 a

Watchdog
And Timers

DMA Controller

UART0
IRDA

Real Time Clock

Programmable
flags

SPORTs SPI

EBIU

1KB internal
Boot ROM

CORE/SYSTEM BUS INTERFACE

32 Core D1 bus 64 Core I bus

Core
Timer

JTAG/
Debug

Performance
Monitor

Core
Processor

L1
Instruction
Memory

L1 Data

Memory
LD1 32

64

PPI

Peripheral Access Bus (PAB)

DMA Access Bus
(DAB)

External Access Bus
(EAB)

Power
Management

Event
Controller

32DMA Mastered
bus

ADSP-BF533 Block Diagram

Core DA0 bus32 32
Core D0 bus

Core DA1 bus32
Core Clock (CCLK) Domain

System Clock (SCLK) Domain

LD0 32

16 1616

16

External Port Bus
(EPB)

DMA Ext Bus
(DEB)

16

DMA Core Bus (DCB)16

SD32

Data
Address
Control

3

10-3 a

ADSPADSP--BF533 TimersBF533 Timers
• Six Timers

− One Core Timer
− One Watchdog Timer
− One Real-Time Clock (RTC)
− Three Identical 32-bit General Purpose Timers

• Pulse Capture Mode
• PWM Mode
• External Clock Mode

4

10-4 a

Core TimerCore Timer

5

10-5 a

Core TimerCore Timer

• Generates interrupts at multiples of CCLK rate
− 32-bit tick timer

• Dedicated Interrupt Priority 6 (IRQ6 = IVTMR)
• Optional Auto-Reload Feature

TSCALE
8 bit

TCOUNT
32 bit

TPERIOD
32 bit

IRQ 6

Interrupt Rate = CCLK / [(TSCALE + 1) x TPERIOD]

CCLK

6

10-6 a

Core TimerCore Timer

• 3 Bits Enable The Core Timer To Generate Interrupts
− TMPWR, bit 0 in Core Timer Control Register (TCNTL)

• Provides Power To Core Timer
− TMREN, bit 1 in the TCNTL, Enables Core Timer
− IVTMR, bit 6 in the IMASK register, Enables Core Timer Interrupt

• Core Timer Is Halted In Emulator Mode

• Timer Scale Register (TSCALE) Controls How Often Timer Count
Register (TCOUNT) Is Decremented
− TCOUNT decrements once every TSCALE+1 CCLK cycles

• When TCOUNT Decrements to Zero
− Interrupt is generated

• Write 1 to TINT (bit 3 in TCNTL) to clear interrupt
− If auto-reload is enabled (TAUTORLD, bit 2 in TCNTL)

• TCOUNT reloaded with Timer Period Register (TPERIOD)

7

10-7 a

Core Timer Control Register (TCNTL)Core Timer Control Register (TCNTL)

* - Bits 0-3 are 0 at reset, the rest are undefined.

*

8

10-8 a

Core Timer Count (TCOUNT) RegisterCore Timer Count (TCOUNT) Register

Core Timer Period (TPERIOD) Register

9

10-9 a

Core Timer Scale Register (TSCALE)Core Timer Scale Register (TSCALE)

* Determines How Many CCLK Cycles Per TCOUNT Decrement

10

10-10 a

Watchdog TimerWatchdog Timer

11

10-11 a

ADSPADSP--BF533 Watchdog TimerBF533 Watchdog Timer

• Peripheral Timer Clocked By The System Clock (SCLK)
• Used To Improve System Reliability By Generating An Event

When The Timer Expires Before Being Updated By Software
• Type Of Event Generated By Watchdog Is Programmable In

Watchdog Control (WDOG_CTL) Register
− Reset (software reset takes place)
− NMI (non-maskable interrupt occurs)
− General Purpose Interrupt (IVG13, by default)

• Enable Watchdog Timer To Generate Interrupts
− Set Software Watchdog Timer Interrupt Bit (bit 20 in SIC_IMASK)
− Set IVG13 (bit13 in IMASK register), by default

• When interrupt priority is reassigned, the IVGx bit changes
− Enable timer and type of event generated in WDOG_CTL

12

10-12 a

ADSP-BF533 Watchdog Timer

WDOG_STAT
32 bit (readable)

IRQ

Watchdog Interval = WDOG_CNT / SCLK

WDOG_CNT
32 bit

Any write to WDOG_STAT
triggers reload from WDOG_CNT

WDOG_CTL
16 bit

NMI
Reset

• Must be periodically serviced by software
• Unique 8-bit pattern (0xAD) required to disable watchdog timer
• W1C bit in WDOG_CTL (bit 15, TRO) indicates expiration

− Watchdog MUST be disabled to clear TRO bit!
• Watchdog Is Halted In Emulator Mode

SCLK

13

10-13 a

Watchdog Control Register (WDOG_CTL)Watchdog Control Register (WDOG_CTL)

When ICTL[1:0] is set to generate a reset event, bit 15 of the
WDOG_CTL register is cleared and the Software Watchdog Timer
Source bit in the SWRST register is set when the watchdog timer
expires. The SWRST register is discussed further in the System
Design chapter.

When ICTL[1:0] is set to generate an NMI or GP interrupt, bit 15
of the WDOG_CTL register is sticky and must be cleared in the
Interrupt Service Routine when the watchdog timer expires.

14

10-14 a

Watchdog Count Register (WDOG_CNT)Watchdog Count Register (WDOG_CNT)

* WDOG_CNT register is number of SCLK cycles to count before generating event

15

10-15 a

Watchdog Status Register (WDOG_STAT)Watchdog Status Register (WDOG_STAT)

* Reads Of WDOG_STAT Return Current Count Value

* Writes To WDOG_STAT Reload WDOG_STAT With WDOG_CNT Value

16

10-16 a

Real Time ClockReal Time Clock

17

10-17 a

RealReal--Time Clock FeaturesTime Clock Features

• Provides digital watch features to the processor
− Time of day, alarm, and stopwatch count-down

• Typically used to implement real-time watch or “life counter”
− Counts the elapsed time since last system reset

• Uses dedicated power supply pins
− Independent of any reset
− Maintains functionality even when rest of processor is powered

down
• Primary function is to maintain time of day using 4 counters

− Seconds, Minutes, Hours, Days
• Each of the 4 counters can generate an interrupt
• Each interrupt is independently controlled

• Equipped With Two Alarm features
− Daily and Day-And-Time
− Each has its own independently-controlled interrupt

18

10-18 a

ADSP-BF533 Real-Time Clock (RTC)

RTC_STAT

RTC_ALARM

• Independent Clock and Power Supply
− Connect 32.768 kHz crystal to RTXI / RTXO
− Clock Can Be Set To 1 Hz to Count Time and Days

• Enabled by setting pre-scalar (bit 0 in RTC_PREN)
• Otherwise, clock is 32768 Hz

− RTC cannot be disabled by software

19

10-19 a

ADSP-BF533 RTC Interrupts

• RTC Interrupt May Be Issued Based On 7 Different Events
− Interval interrupts

• Every Second, Minute, Hour, and/or Day
− Alarm interrupts (single or daily)

• Single occurs when RTC_ALARM matches RTC_STAT
• Daily recurs when all non-day fields match

− Stopwatch interrupt
• 16-bit counter (RTC_SWCNT) decrements every RTC tick

− Period of up to 18 hours, 12 minutes, and 15 seconds
• Interrupt when RTC_SWCNT reaches zero, no autoreload

• RTC Interrupt Can Be Used To Wake Processor From Sleep Modes

20

10-20 a

RTC WakeRTC Wake--Up EventUp Event

• Set RTC Wake-Up Event Bit In SIC_IWR
P0.H = HI (SIC_IWR);
P0.L = LO (SIC_IWR);
R0 = [P0];
BITSET (R0, 7); // Bit 7 is RTC Wake-Up Enable Bit
[P0] = R0;

• Configure RTC and Enable RTC Interrupt
− Wake-Up Can Come From Either Stopwatch OR Alarm Event

• Program PLL To Put Processor Into Sleep or Deep Sleep Mode
• Upon Wake-Up (Stopwatch Expired or Alarm Active), the ISR:

− Writes RTC_ISTAT to acknowledge RTC wake-up
− If Coming From Sleep Mode, No Further Action Is Required
− If Coming From Deep Sleep Mode

• PLL state is now “Active” (PLL is Bypassed)
• If transition to “Full On” is needed, the BYPASS bit in PLL_CTL must

also be cleared

21

10-21 a

Real Time Clock Interrupt Control RegisterReal Time Clock Interrupt Control Register

22

10-22 a

Real Time Clock Interrupt Status RegisterReal Time Clock Interrupt Status Register

* Any writes to RTC registers pend until the expiration of a RTC tick.
Polling bit 15 for a 1 or bit 14 for a 0 will ensure that the RTC state is
that which has just been programmed.

23

10-23 a

Real Time Clock Stopwatch Count RegisterReal Time Clock Stopwatch Count Register

The count value in this register applies to seconds

24

10-24 a

Real Time Clock Real Time Clock PrescalerPrescaler Enable RegisterEnable Register

When bit 0 is set, the RTC runs at 1 Hz.

When bit 0 is cleared, the RTC runs at 32.768 kHz.

25

10-25 a

General Purpose Timers

26

10-26 a

Three Peripheral Timers of the ADSPThree Peripheral Timers of the ADSP--BF533BF533

• Three Identical Timers Can Be Configured In 3 Modes
− Pulse Width Modulation (PWM_OUT)
− Width and Period Capture (WDTH_CAP)
− External Event Counter (EXT_CLK)

• Dedicated Pins TMR2, TMR1, TMR0
• One Programmable Interrupt Each
• Three 32-bit Registers Each

− Width (TIMERx_WIDTH)
− Period (TIMERx_PERIOD)
− Counter (TIMERx_COUNTER) (read-only)

• One 16-bit Configuration Register Each (TIMERx_CONFIG)
• Three Common Registers Affect All 3 Timers Simultaneously

− Timer Enable
− Timer Disable
− Timer Status (Interrupt requests, overflows, slave enables)

27

10-27 a

PWM_OUT ModePWM_OUT Mode

• Timers clocked from one of three sources
− Internally using SCLK
− Internally by PPI Clock when PPI is enabled
− Externally using PF1 pin when PPI is disabled

• TMRx pins are outputs by default
− Can be tristated using OUT_DIS in TIMERx_CONFIG, which reduces

power consumption when the output signal is not in use
• Two PWM_OUT modes

− PWM Waveform Generation (PERIOD_CNT = 1)
• Interrupt when Period expires
• Use this mode for generating periodic interrupts

− Single Pulse Generation (PERIOD_CNT = 0)
• Stops and disables itself after first Pulse Width expires
• Interrupt when Pulse Width expires
• Use this mode for programmable software delay

28

10-28 a

PWM_OUT Mode Block DiagramPWM_OUT Mode Block Diagram

29

10-29 a

Single Pulse GenerationSingle Pulse Generation
• Single Pulse Generation (PERIOD_CNT = 0)

− TOGGLE_HI has no effect
− PULSE_HI determines active state of single pulse

Interrupt

After the pulse, the timer is
disabled automatically

Pulse Width

Pulse Width

PULSE_HI = 1

PULSE_HI = 0
Interrupt

30

10-30 a

Waveform Generation

Interrupt Interrupt
Pulse Width

Period

• PWM Waveform Generation (PERIOD_CNT = 1)
− TMRx pin polarity is programmable (PULSE_HI bit)
− Toggle Waveform Every Period or Every Other Period (TOGGLE_HI bit)
− Period and Pulse Width adjustable
− On-the-fly Update Procedure

PULSE_HI = 1

TOGGLE_HI = 0

Interrupt

PULSE_HI = 1

TOGGLE_HI = 1

Interrupt

31

10-31 a

PWM Mode Timer Reload

COUNTER

PERIODWIDTH

WIDTH BUFFER PERIOD BUFFER

Counter reload

WIDTH WIDTHPERIOD - WIDTH

PROTECTED COHERENCY
Width and Period registers are
buffered. They are all latched on
writes to TIMERx_WIDTH
Therefore always update
width word last

Counter is reloaded by
0xFFFF FFFF – Width
when enabled and when
Period expires

Counter is reloaded
by 0xFFFF FFFF –
(Period – Width)
when Width expires

32

10-32 a

Interrupt

PWM_OUT Mode Example

TMRx Pin is driven actively while the Mode is 01.
It‘s driven low when Timer is disabled

Example:
Width=0xFF

Period=0xFFF

Counts up to
Ex: 0xFFFF FFFE

Counter is reloaded by
0xFFFF FFFF – (Period – Width)

Ex: 0xFFFF FFFF – (0xFFF – 0xFF)
Ex: 0xFFFF F0FF

Example assumes PULSE_HI = 1, PERIOD_CNT=1, TOGGLE_HI = 0

Set Mode to
PWM_OUT (01)

Counter: FFFF
FF00

FFFFF0FFFFFF FFFE

Timer Enable: TMRx pin
asserts, loads Counter by

0xFFFF FFFF – Width
Ex: 0xFFFF FFFF – 0xFF

TMRx

xxxx

33

10-33 a

Updating PWM Waveform On The Fly
Exercise: change Width value and keep Period value

Period Period

Width old Width old Width new Width new
Period
– Width old

Period –
Width new

DSP uses new value for reload:
Period – Width new

erroneous Period

Example: Change value here

Period –
Width new

* Width value is latched on the rising edge

* Period value is latched on the falling edge

34

10-34 a

On-the-fly Update Procedure

When updating width value, use this procedure to prevent erroneous periods

Period

Width old Width oldPeriod
– Width old

Period
– Width old
+ Width new
– Width new

Period

Width new
Period –
Width new

PeriodPeriod

Width reg = Width new
Period reg = (Period - Width old + Width new)

Change Period register
back to old Period value

When updating period value only
1) Simply reload TIMERx_PERIOD
2) Read and write back TIMERx_WIDTH

35

10-35 a

Disabling the TimerDisabling the Timer

• In PWM_OUT mode, timer will run to the end of a cycle if
TIMER_DISABLE bit set
− TIMENx will reflect disable, but TRUNx indicates timer is running
− Timer can be stopped immediately by clearing TRUNx bit

36

10-36 a

WDTH_CAP ModeWDTH_CAP Mode

• Timers are clocked internally (SCLK)
• TMRx pins are inputs

− PULSE_HI (active high or low)
− TIN_SEL (capture TMRx or UART RX)

• Period and Width are counted at the same time
• Flexible Interrupt generation

− PERIOD_CNT (End of Width or end of Period)
• Period and Width registers are read-only
• To enable (synchronization latency)

− Set to WDTH_CAP mode
− Add SSYNC
− Set TIMENx in TIMER_ENABLE (timer starts 3 SCLK cycles later)

37

10-37 a

WDTH_CAP Mode Block Diagram

38

10-38 a

WDTH_CAP Mode Example

TMRx is Input

First Leading edge:
Timer starts counting

Trailing edge:
Width register is loaded
with Count value (0x04)

Leading edge:
1) Period register is loaded with

Count value (0x0A)
2) Counter resets to 0x0000 0001

Interrupt is generated:
PERIOD_CNT = 0: End of Width
PERIOD_CNT = 1: End of Period

When counter reaches 0xFFFF FFFF:
Interrupt issued
Overflow bit set
Timer stopped / disabled

Graph is for
PULSE_HI = 1

01 02 03 04 05 06 07 08 09 0A 010101xx 02 03xx

SCLK =
CLKOUT

Counter:

Timer enable:
Counter loaded by 0x0000 0001

39

10-39 a

EXT_CLK ModeEXT_CLK Mode

• External Clock through input TMRx Pins
• Clock counts rising or falling edges
• Width Register is unused
• Period Register is Read/Write
• When Period expires, interrupt or wake-up event is generated (if

enabled)

40

10-40 a

EXT_CLK Mode Block DiagramEXT_CLK Mode Block Diagram

41

10-41 a

EXT CLK Mode

Input comes from TMRx pin

Timer enable

First rising edge loads Counter with
0xFFFF FFFF - Period

Every subsequent
rising edge

increments the
Counter

When reaching count value 0xFFFF FFFE
an Interrupt is generated
Counter reloads to 0xFFFF FFFF - Period

Unused bits / registers:
TIMERx_WIDTH
OVF_ERRx
PERIOD_CNT
UART_RX_SEL
TOGGLE_HI

Load Period with number of rising clock edges between interrupts

Example assumes PULSE_HI=1

42

10-42 a

BF533 32 Bit Timer Registers

When disabled, the Counter retains its state. Enabling the Timer initializes the Counter.

TIMER0_COUNTER 0xFFC0 0604
TIMER1_COUNTER 0xFFC0 0614
TIMER2_COUNTER 0xFFC0 0624

TIMER0_PERIOD 0xFFC0 0608
TIMER1_PERIOD 0xFFC0 0618
TIMER2_PERIOD 0xFFC0 0628

TIMER0_WIDTH 0xFFC0 060C
TIMER1_WIDTH 0xFFC0 061C
TIMER2_WIDTH 0xFFC0 062C

43

10-43 a

BF533 Timer Configuration Register

TIMER0_CONFIG 0xFFC0 0600
TIMER1_CONFIG 0xFFC0 0610
TIMER2_CONFIG 0xFFC0 0620

Do not alter while timer is enabled!

Timers can be
configured to stop

or continue running
during emulation

44

10-44 a

BF533 Timer Enable RegisterBF533 Timer Enable Register

45

10-45 a

BF533 Timer Disable RegisterBF533 Timer Disable Register

If in PWM_OUT mode, timer will continue running until end of PWM pulse after write to this
register

46

10-46 a

BF533 Timer Status Register
TIMERx Interrupt Latch (TIMILx)
• Write-1-to-Clear
• Must be cleared by Timer ISR

TIMERx Overflow and Error (TOVF_ERRx)
• Write-1-to-Clear
• Set when Counter Overflows or Period / Width
registers are initialized with erroneous values
• Error type is accessible in TIMERx_CONFIG

TIMERx Slave
Enable Status

(TRUNx)

• Write-1-to-Clear in
PWM_OUT mode only

• In PWM_OUT mode,
remains set until period
ends, even if TIMERx is
disabled before the period
expires

• In WDTH_CAP and
EXT_CLK modes, it is
identical to TIMENx

• Indicates whether or not
TIMERx is running

47

10-47 a

ADSP-BF533 Programmable Flags

48

10-48 a

Programmable Flags

• Features:
− 16 bi-directional general purpose programmable flags

− Each flag pin can be configured as Input or Output
− Two independent interrupt channels (A/B)

− Level or edge sensitive trigger of input source
− Rising or falling edge trigger of input source
− Single edge or both edges trigger of input source

49

10-49 a

Programmable Flag Pins/Multiplexed FunctionalityProgrammable Flag Pins/Multiplexed Functionality
16 bi-directional general-purpose I/O pins available
Each can be configured as an output, input, or an interrupt pin

Two Interrupt
Requests (FLAGA/FLAGB)

PF0

PF15

PF7

PF8

SPISS /
SPISEL1/
SPISEL2/
SPISEL3/
SPISEL4/
SPISEL5/
SPISEL6/
SPISEL7/

Frame Sync3
I/O #15
I/O #14
I/O #13
I/O #12

I/O #11
I/O #10

I/O #9
I/O #8
I/O #7
I/O #6
I/O #5
I/O #4

Timers PPI SPI PFx

Timer Input Clock

When PPI is enabled PF12-15 are always enabled as PPI I/O data lines.
Other multiplexed pins are enabled by writing to the function’s registers
that use these pins, e.g., SPI_FLG, PPI_CTL, and TIMERx_CONFIG

registers for SPI, PPI, and Timers 0,1,2 functionality, respectively.

50

10-50 a

PFx CPFx Controlontrol RRegistersegisters
• PFx are programmed with a group of flag configuration

registers
− Flag Direction register (FIO_DIR)
− Flag Input Enable Register (FIO_INEN)
− Flag Interrupt Sensitivity (FIO_EDGE)
− Flag Set on Both Edges Register (FIO_BOTH)
− Flag Polarity register (FIO_POLAR)
− Flag Control registers

• Clear and Set (FIO_FLAG_C and FIO_FLAG_S)
• Data and Toggle (FIO_FLAG_D and FIO_FLAG_T)

− Flag Interrupt Mask Registers (FIO_MASKA_C, FIO_MASKA_S,
FIO_MASKA_D, FIO_MASKA_T FIO_MASKB_C,
FIO_MASKB_S, FIO_MASKB_D, FIO_MASKB_T)

51

10-51 a

FFlaglag DDirection irection RRegister egister (FIO_DIR) (FIO_DIR)

0 0 0 0 0 0 0 00 0 0 00 0 0 0

•Writing a “1” to a bit of the FIO_DIR register
configures the corresponding flag pin as an
output;
•Writing a “0” configures the corresponding
flag pin as an input

Each bit of the FIO_DIR register
corresponds with each of the 16

available flag pins

Configures a flag pin as an Input or Output

Flag: PF15 PF0

Bit: 15 0

Reset = 0x0000

52

10-52 a

Flag Input Enable Register Flag Input Enable Register (FIO_INEN)(FIO_INEN)

The Flag Input Enable Register enables input
buffers on any flag pin that is being used as an

input.

0 0 0 0 0 0 0 00 0 0 00 0 0 0
Flag: PF15 PF0

A “0” leaves the Input Buffer
Disabled <==> disconnecting

external pads

A “1” leaves the Input Buffer
Enabled

When input buffers are Disabled, the processor samples the pads as zeros,
therefore no pull up or pull down resistors are needed

If ALL input buffers are Disabled, then software can set values in the
FIO registers and read them back, however, if any input is enabled then a
Zero will be read back on the flag block for all input flags.

53

10-53 a

Flag Interrupt Sensitivity (FIO_EDGE) Flag Interrupt Sensitivity (FIO_EDGE)
andand

Flag Set on Both Edges Register (FIO_BOTH)Flag Set on Both Edges Register (FIO_BOTH)

Flag Interrupt Sensitivity Register (FIO_EDGE) specifies
the Flag pins for either level or edge sensitivity.

0 0 0 0 0 0 0 00 0 0 00 0 0 0

Flag: PF15 PF0

0 0 0 0 0 0 0 00 0 0 00 0 0 0
Flag: PF15 PF0

FIO_BOTH

FIO_EDGE

A “0” configures the corresponding Flag Pin as a level
sensitive, a “1” as an edge sensitive input.

Flag Set on Both Edges Register (FIO_BOTH) configures
sensitivity for either one or both edges.

A “1” configures the corresponding Flag Pin
for both-edges sensitivity. An interrupt

request is generated on each edge.

A “0” configures Flag Pin as rising- or
falling-edge sensitivity (determined by the

value in FIO_POLAR).

54

10-54 a

FFlag Polarity Register lag Polarity Register (FIO_POLAR)(FIO_POLAR)

The Flag Polarity Register selects an active
high or low polarity of an input signal.

0 0 0 0 0 0 0 00 0 0 00 0 0 0
Flag: PF15 PF0

A “0” configures the corresponding
flag pin as active high or rising

edge input.

A “1” configures the corresponding
flag pin as active low or falling

edge input

Flag Polarity applies for Flag Pins used as inputs or interrupts

55

10-55 a

Flag Control RegistersFlag Control Registers
(FIO_FLAG_C and FIO_FLAG_S)(FIO_FLAG_C and FIO_FLAG_S)

Setting a flag pin that is configured as interrupt, allows software configurable interrupts

Flag Clear Register (FIO_FLAG_C) is used to clear the Flag
Pin.
When it is used as an interrupt pin you have to clear it after
an interrupt occured.

Flag Set Register (FIO_FLAG_S) is used to set the
Flag Pin.

0 0 0 0 0 0 0 00 0 0 00 0 0 0 FIO_FLAG_C

FIO_FLAG_S0 0 0 0 0 0 0 00 0 0 00 0 0 0

Write 1
to clear

Flag: PF15 PF0

Write 1
to set

Flag: PF15 PF0

Writing a 0 has
no effect

Read either register for flag state (input or output)

56

10-56 a

Flag Data Register Flag Data Register (FIO_FLAG_D)(FIO_FLAG_D)
andand

Flag Toggle Register Flag Toggle Register (FIO_FLAG_T)(FIO_FLAG_T)

The Flag Data Register (FIO_FLAG_D)
Directly specifies the state of all PFx pins.

0 0 0 0 0 0 0 00 0 0 00 0 0 0

Flag: PF15 PF0

0 0 0 0 0 0 0 00 0 0 00 0 0 0
Flag: PF15 PF0

FIO_FLAG_T

FIO_FLAG_D

Flag Toggle Register (FIO_FLAG_T)
toggles the state of all PFx pins.

Write a 1 to toggle

A “0” clears the state of the pin. A “1” sets the state of the pin.

57

10-57 a

Flag Interrupt A and B Mask Flag Interrupt A and B Mask ClearClear and and SetSet
Registers (FIO_MASKx_C and FIO_MASKx_S)Registers (FIO_MASKx_C and FIO_MASKx_S)

0 0 0 0 0 0 0 00 0 0 00 0 0 0

0 0 0 0 0 0 0 00 0 0 00 0 0 0

Write 1
to clear

Flag: PF15 PF0

Write 1
to set

Flag: PF15 PF0

FIO_MASKx_C is used to disable the Flag as interrupt source.

FIO_MASKx_S is used to enable the Flag as interrupt source.

FIO_MASKA_S/ FIO_MASKA_C and
FIO_MASKB_S/ FIO_MASKB_C registers allow
two different Interrupt priorities for all Flag Pins.

(FlagA and FlagB interrupt)

An interrupt is
created with a

logical OR of all
enabled Flags.

58

10-58 a

Flag Interrupt A and B Mask Flag Interrupt A and B Mask DataData and and ToggleToggle
Registers (FIO_MASKx_D and FIO_MASKx_T)Registers (FIO_MASKx_D and FIO_MASKx_T)

0 0 0 0 0 0 0 00 0 0 00 0 0 0

0 0 0 0 0 0 0 00 0 0 00 0 0 0

Flag: PF15 PF0

Write 1
to

toggle

Flag: PF15 PF0

FIO_MASKx_D is used to directly specify the mask value of the
Flag(s) as interrupt source(s).

FIO_MASKx_T is used to toggle the state of the interrupt mask of
the Flag(s) as interrupt source(s).

59

10-59 a

Clearing FIO Interrupts

• Edge sensitive interrupts must be cleared within the ISR

− To clear an interrupt, write 1 to the corresponding PF bit in
the FIO_FLAG_C register (recommended way)

or
a 0 (zero) to the corresponding PF bit in the FI0_FLAG_D
register

NOTE: FIO_FLAG_D affects all 16 bits, so care must
be taken to not inadvertently change the state of other
pins.

60

10-60 a

Example Configurations

P0.H = HI(FIO_DIR); // assign P0 the address of

P0.L = LO(FIO_DIR); // FIO_DIR register

R0.L = 0x000f; // load value of 0xf into R0

W[P0] = R0.L; // store value

/* If using pre-defined registers (such as the FIO_DIR), then
the defBF533.h header file must be included. */

#include <defBF533.h>

/* Setting the Flag Direction Register */

/*The result of the last store instruction sets PF0-3 as outputs
(writing a 1 to bits 0-3 of the FIO_DIR register). */

61

10-61 a

Example Configurations
/* If using pre-defined registers (such as the FIO_DIR), then

the defBF533.h header file must be included. */
#include <defBF533.h>

/* Setting the Flag Set Register – Write 1 to Set */

P0.L = LO(FIO_FLAG_S);

P0.H = HI(FIO_ FLAG_S);

R0.L = 0x000f;

W[P0] = R0.L;

/* Setting the Flag Clear Register – Write 1 to Clear */

P0.L = LO(FIO_FLAG_C);

P0.H = HI(FIO_ FLAG_C);

R0.L = 0x000f;

W[P0] = R0.L;

/* This sequence of code sets

PF0-3 (configured as outputs

on the previous slide). */

/* This sequence of code clears

PF0-3 (previously set in the

code above). */

