Section 16

System Design

Operating Modes

Operating Modes

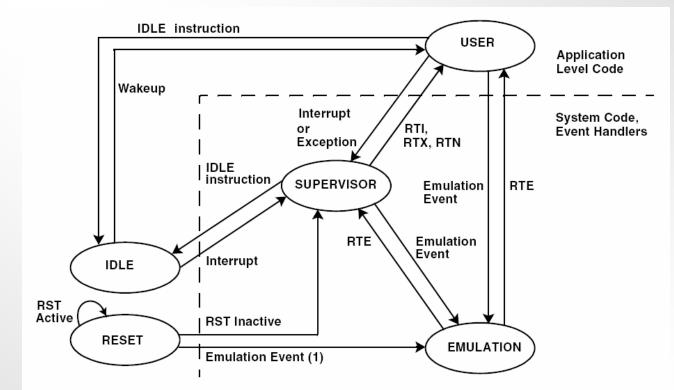
User mode

Causes exceptions when protected resources are accessed. May be used for algorithm/application code

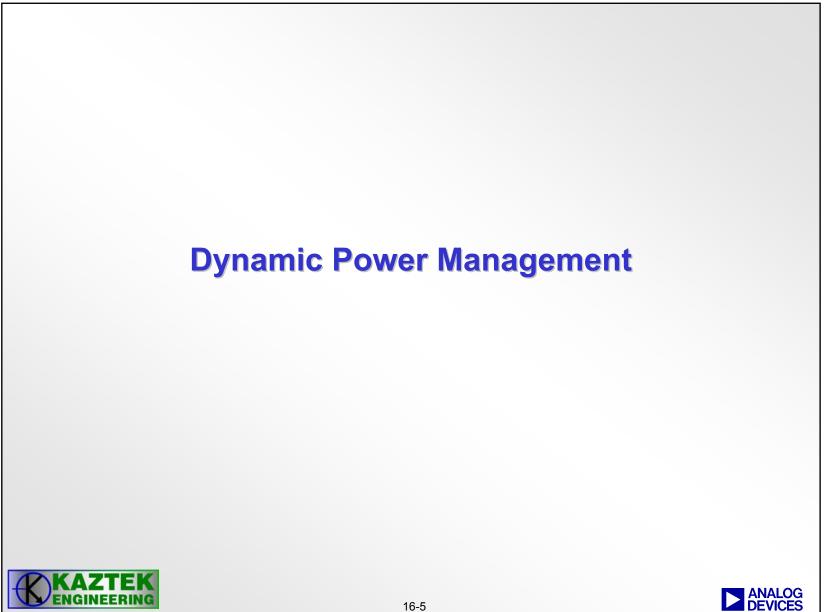
Supervisor mode

has unprotected access to all resources. May be used for O/S kernel, device drivers, debuggers, ISRs

Emulator (or Debug) mode


has supervisor abilities and is accessible via JTAG

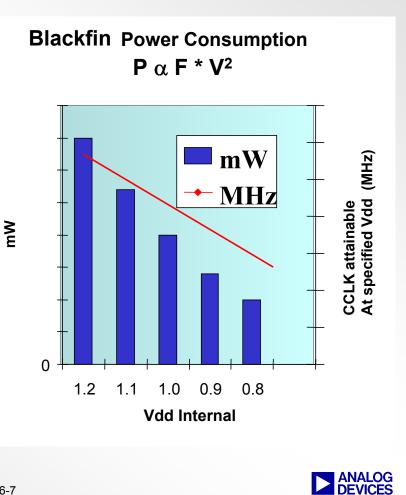
Operating Modes provide a feature to implement RTOS architectures and Multitasking schemes. Smaller applications may simply run in Supervisor mode all the time.



Operating Modes

(1) Normal exit from Reset is to Supervisor mode. However, emulation hardware may have initiated a reset. If so, exit from Reset is to Emulation.

Power Management Options

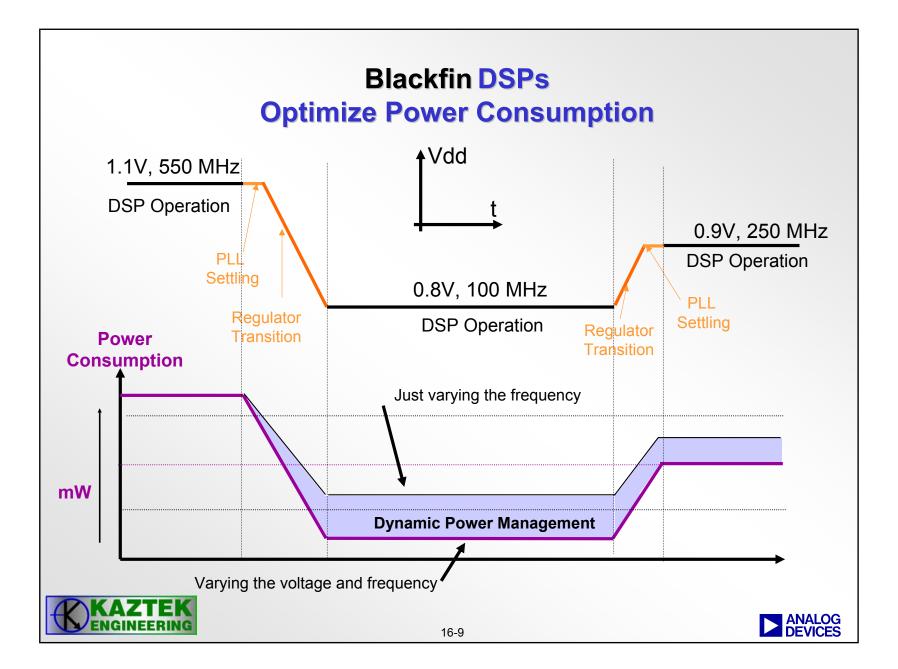

- Low Active Power
 - Flexible power management with automatic power-down for unused peripheral sections
 - Dynamic Power Management allows dynamic modification of both frequency and voltage
- Low Standby Power
 - 4 Power modes
 - Real Time Clock with alarm and wakeup features

Dynamic Power Management

- Clocks to unused • peripherals are automatically disabled.
- **Integrated Switching** • **Regulator Controller**
 - SW-based Voltage-**Scaling Capability**

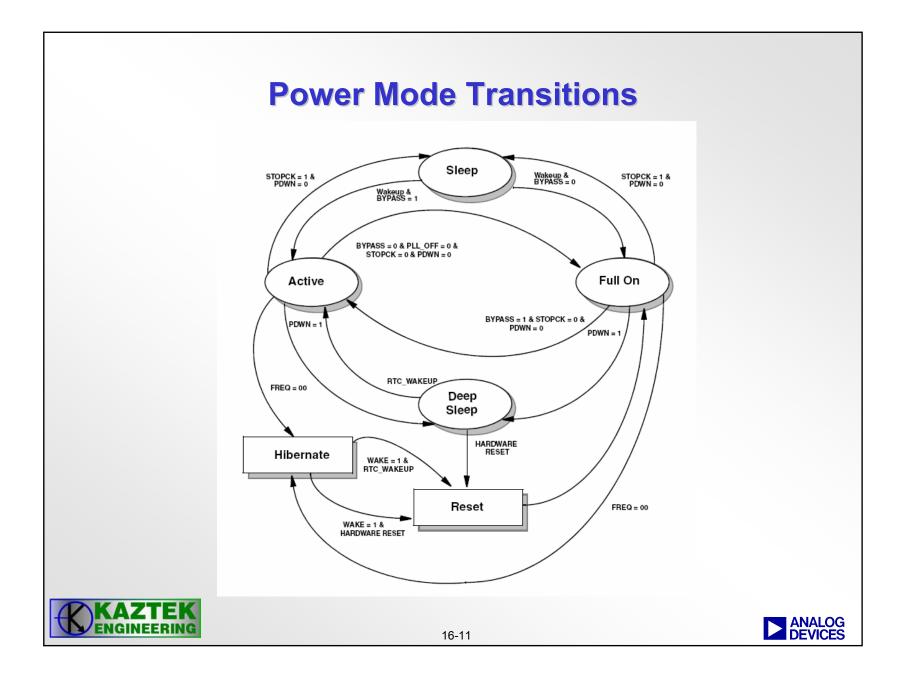
Blackfin DSPs Control Voltage & Frequency

- Onboard, software-controlled switching regulator controller
- Highly flexible 1x-64x PLL allows easy frequency scaling
- Multiple Power-Down Modes
- Functional & Peripheral Blocks are Clocked Only When Used


Dynamic Power Management Using RTOS or Firmware

Function	Example MHz	Example Vdd (V)
F ₀ (x)	550	1.1
F ₁ (y)	250	0.95
F _n (z)	100	0.8

Profiling Tools Audit MIPS Requirements By Function

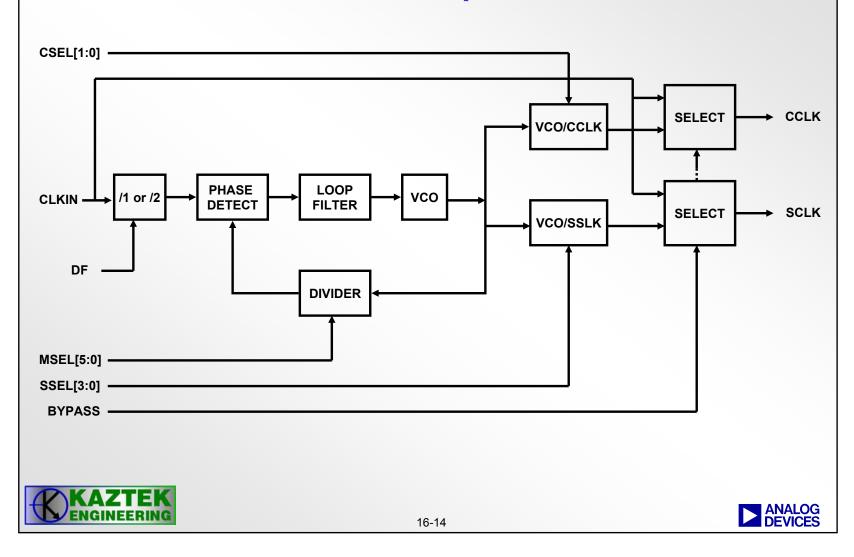


Power Management States

Mode	Relative Power Savings	Notes
Full On	Min	Max performance
Active	Low	Full core operation at CLKIN. System DMA to L1 supported. PLL is bypassed and can be disabled.
Sleep	High	Core idle. CCLK disabled. SCLK enabled.
Deep Sleep	Very High	Core idle. Only Real-Time Clock enabled. Exit only via HW reset or RTC interrupt.
Hibernate	Мах	VDDINT is disabled. Only VDDEXT applied. Power up via HW reset or RTC interrupt.

Clock States in Different Power Modes

Mode	PLL	PLL Bypassed?	Core Clock (CCLK)	System Clock (SCLK)
<u>Full On</u>	Enabled	No	Enabled	Enabled
<u>Active</u>	Enabled or Disabled	Yes	Enabled	Enabled
<u>Sleep</u>	Enabled	No	Disabled	Enabled
<u>Deep Sleep</u> <u>Hibernate</u>	Disabled		Disabled	Disabled


BF533 Clocking

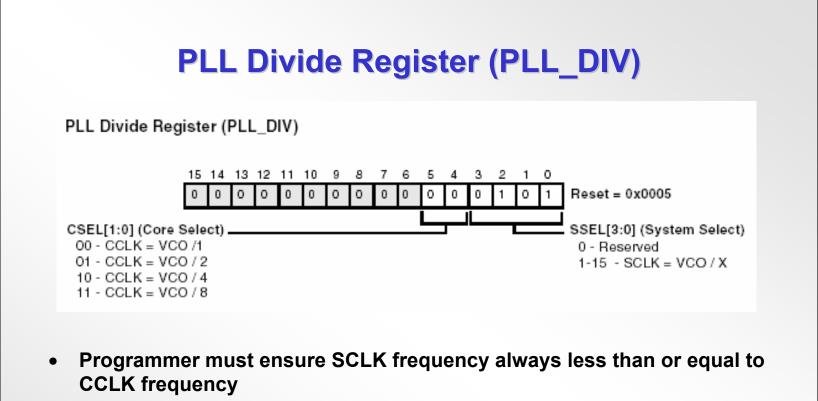
- The BF533 has 2 internal clock domains: CCLK (core clock) and SCLK (system clock)
 - CCLK is divided down from the PLL VCO frequency (via CSEL bits in PLL_DIV), or equals the CLKIN pin frequency if the PLL is bypassed
 - SCLK is divided down from the PLL VCO frequency (via SSEL bits in PLL_DIV), or equals the CLKIN pin frequency if the PLL is bypassed
 - SCLK must not exceed 133 MHz
- CLKIN can be driven from external oscillator or crystal
- Programmable PLL supports 1x to 64x frequency multiplication, enabling high-speed operation with low-frequency clock inputs
 - Program via bits in PLL_CTL register

Phase-Locked Loop Architecture

CCLK Ratio Control

Signal Name	Divider Ratio	Example Frequency Ratios (MHz)	
CSEL[1:0]	VCO/CCLK	VCO	CCLK
00	1	300	300
01	2	600	300
10	4	600	150
11	8	400	50

•Upon reset, CSEL[1:0] = 00


SCLK Ratio Control

Signal Name	Divider Ratio	Example Free (MHz)	Example Frequency Ratios (MHz)	
SSEL[3:0]	VCO/SCLK	VCO	SCLK	
0000	Reserved	N/A	N/A	
0001	1:1	100	100	
0010	2:1	200	100	
0011	3:1	400	133	
0100	4:1	500	125	
0101	5:1	600	120	
0110	6:1	600	100	
N=7-15	N:1	600	600/N	

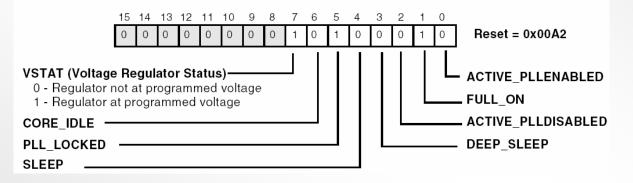
•Upon reset, SSEL[3:0] = 0101

PLL Control Register (PLL_CTL) Controls operation of the PLL, specifying loop parameters and • global control bits PLL Control Register (PLL_CTL) 15 14 13 12 11 10 - 9 6 5 з 2 8 7 4 1 0 Reset = 0x14000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 MSEL[5:0] DF (Divide Frequency) (Multiplier Select) 0 - Pass CLKIN to PLL See Table 8-1 on page 8-4 for 1 - Pass CLKIN/2 to PLL CLKIN/VCO multiplication PLL OFF factors 0 - Enable power to PLL BYPASS -1 - Disable power to PLL 0 - Do not bypass the PLL STOPCK (Stop Clock) 1 - Bypass the PLL 0 - CCLK on 1 - CCLK off PDWN (Power Down) 0 - All internal clocks on 1 - All internal clocks off ANALOG DEVICES

- Otherwise, SCLK will be automatically adjusted to fall into compliance, but not necessarily optimized for top allowable speed
- Programmer must ensure SCLK frequency does not exceed 133 MHz

Programming PLL Transitions

- Simply modifying PLL_CTL bits will not change the PLL operating mode until a specific code sequence executes:
 - CLI R0; /* disable interrupts */
 - IDLE; /* drain pipeline and send core into idle state */
 - STI R0; /* re-enable interrupts after wakeup */
- This sequence is necessary when changes have been made to MSEL, DF, or operating state bits (PDWN, BYPASS, STOPCK)
 - However, changes to CSEL or SSEL divide ratios take effect immediately, without needing the above sequence
- If the CLKIN-to-VCO multiplier has been changed, or the PLL has been re-enabled, the PLL will now need to relock



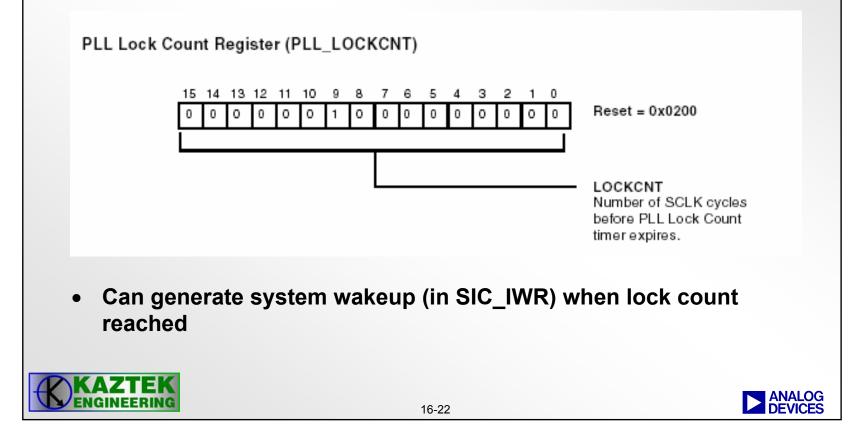
PLL Status Register (PLL_STAT)

• PLL_STAT indicates the operating mode of the PLL and the ADSP-BF533 processor

PLL Status Register (PLL_STAT)

Read only. Unless otherwise noted, 1 - Processor operating in this mode. For more information, see "Operating Modes" on page 8-14.

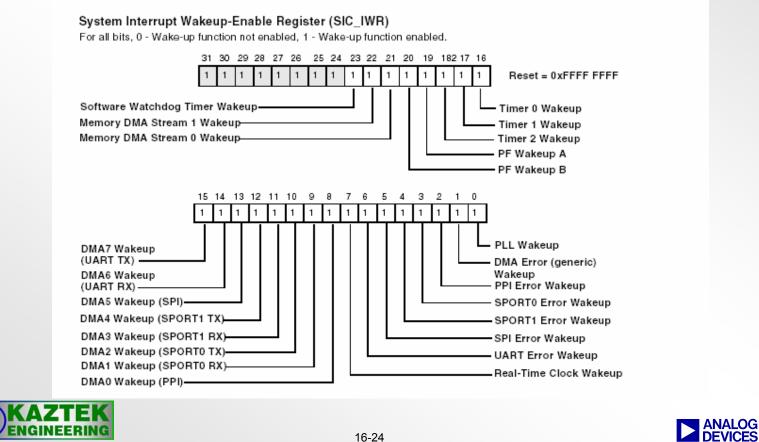
Relocking the PLL

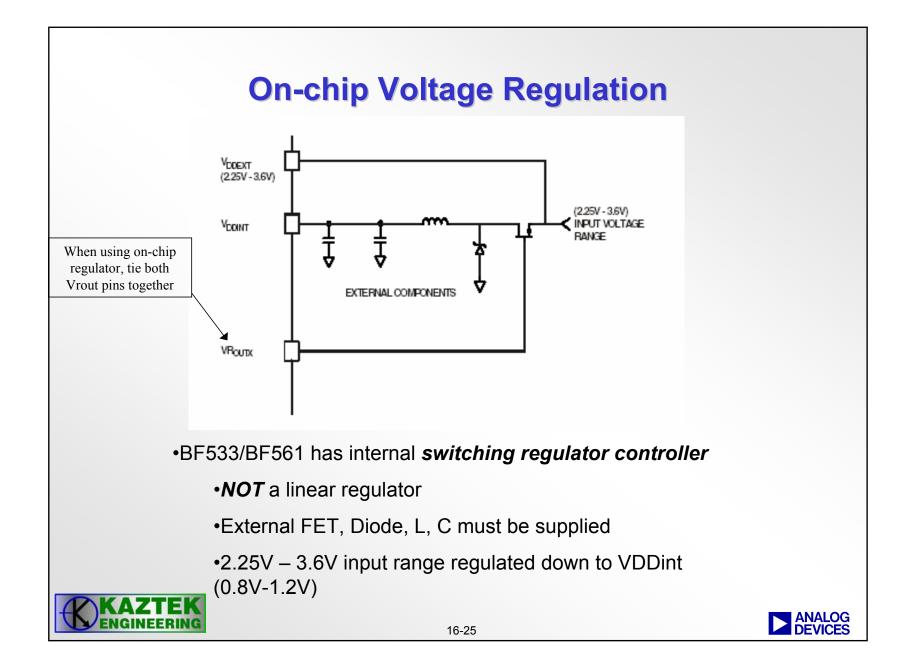

- PLL lock count starts once the IDLE instruction has executed
- PLL lock counter is cleared and then increments each SCLK cycle
- When it reaches the value programmed into the PLL_LOCKCNT MMR, the PLL_LOCKED bit is set in PLL_STATUS
- Then the PLL Wakeup interrupt is asserted, and an interrupt will occur if this interrupt is enabled in SIC_IMASK

PLL Lock Count Register (PLL_LOCKCNT)

• PLL_LOCKCNT defines the number of SCLK cycles before the PLL_LOCKED bit (in PLL_STAT) gets set after a PLL transition

IDLE state


- After executing 'IDLE', an 'SSYNC' instruction automatically occurs.
 - The DSP core stops executing instructions, retains the contents of pipeline and waits for an interrupt or wakeup.
 - PLL, CCLK and SCLK continue running
- 2 ways to leave an IDLE state
 - DSP services an interrupt. DSP will return to the instruction following the IDLE after executing the RTI instruction.
 - A peripheral wakes the DSP up (based on SIC_IWR settings), but no interrupt occurs. DSP returns to instruction that follows IDLE



System Interrupt Wakeup-Enable Register (SIC_IWR)

• Choose the peripherals that can wake the core from an idle state in SIC_IWR

PLL Control Register (PLL_CTL) Controls operation of the PLL, specifying loop parameters and • global control bits PLL Control Register (PLL_CTL) 15 14 13 12 11 10 - 9 6 5 з 2 8 7 4 1 0 Reset = 0x14000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 MSEL[5:0] DF (Divide Frequency) (Multiplier Select) 0 - Pass CLKIN to PLL See Table 8-1 on page 8-4 for 1 - Pass CLKIN/2 to PLL CLKIN/VCO multiplication PLL OFF factors 0 - Enable power to PLL BYPASS -1 - Disable power to PLL 0 - Do not bypass the PLL STOPCK (Stop Clock) 1 - Bypass the PLL 0 - CCLK on 1 - CCLK off PDWN (Power Down) 0 - All internal clocks on 1 - All internal clocks off ANALOG DEVICES

A	DSP-	BF533 Voltage Regulator Control Re (VR CTL)	egiste	r
Voltag	e Regulator	Control Register (VR_CTL)		
0 - RTC 1 - RTC VLEV[3	0008 0 0 Wakeup-enat or Reset wake or Reset wake	Die) FREQ[1:0] (Voltage Frequency) eup disabled Controls the switching oscillator frequency for the voltage regulator, see Table 8-10 for encodings	FREQ 00 01 10 11	Value Powerdown 333KHz 667KHz 1MHz
0000-0101	Reserved		Gain	Value
0110	.85 volts		00	5
0111	.90 volts		01	10
1000	.95 volts			
1001	1.00 volts		10	20
1010	1.05 volts		11	50
1011	1.10 volts			
1100	1.15 volts	To bypass the on-chip regulator		
1101	1.20 volts			
1110	1.25 volts	•Leave the 2 VROUT pins floating		
1111	1.30 volts	•Set FREQ[1:0] in VR_CTL to '00'		
KAZ	TEK	•Connect external 0.8V-1.2V supply to VDDint pi	ns	
ENGINE	ERING	16-27		DEVICES

Resetting the ADSP-BF533

Reset Types

	Reset	Source	Result	
	Hardware reset	The RESET pin causes a hardware reset.	Resets both the core and the peripherals, including the Dynamic Power Manage- ment Controller (DPMC). Resets the No Boot on Software Reset bit in SYSCR. For more information, see "System Reset Configuration Register (SYSCR)" on page 3-14.	
	System Software reset	Writing b#111 to bits [2:0] in the system MMR SWRST at address 0xFFC0 0100 causes a System Software reset.	Resets only the peripherals, excluding the RTC (Real-Time Clock) block and most of the DPMC. The DPMC resets only the No Boot on Software Reset bit in SYSCR. Does not reset the core.	System transitions into boot mode sequence upon completion of
Both of these SW resets are used rimarily for debugging purposes.	Watchdog Timer reset	Programming the watchdog timer appropriately causes a Watchdog Timer reset.	Resets both the core and the peripherals, excluding the RTC block and most of the DPMC. The Software Reset register (SWRST) can be read to determine whether the reset source was the watchdog timer.	internal reset
•The system may be in an unreliable state after a SW reset period ends. Therefore, execution must be from L1 memory after a Core or Peripheral SW Reset.	Core Double- Fault reset	If the core enters a dou- ble-fault state, a reset can be caused by unmasking the Core Double-Fault Reset Mask bit in the System Interrupt Controller (SIC) Interrupt Mask register (SIC_IMASK).	Resets both the core and the peripherals, excluding the RTC block and most of the DPMC. SWRST can be read to determine whether the reset source was Core Double-Fault.	Coccurs when an exception is generated while another exception is being handled
	Core-Only Soft- ware reset	Executing a RAISE1 instruc- tion or by setting the Soft- ware Reset (SYSRST) bit in the core Debug Control reg- ister (DBGCTL) via emula- tion software through the JTAG port. DBGCTL is not visible to the memory map.	Resets only the core. The peripherals do not recognize this reset.	

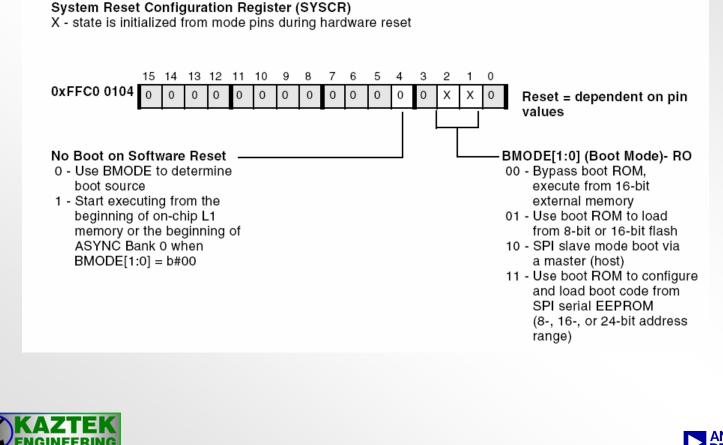
Hardware Reset

- Asynchronous
- /RESET pin asserted low until after supplies have stabilized
- After pin deasserted, reset timer allows all peripherals to complete a reset
- Interrupt request generated
- System then moves into boot mode (based on BMODE pins)

Staying in Supervisor Mode after Reset

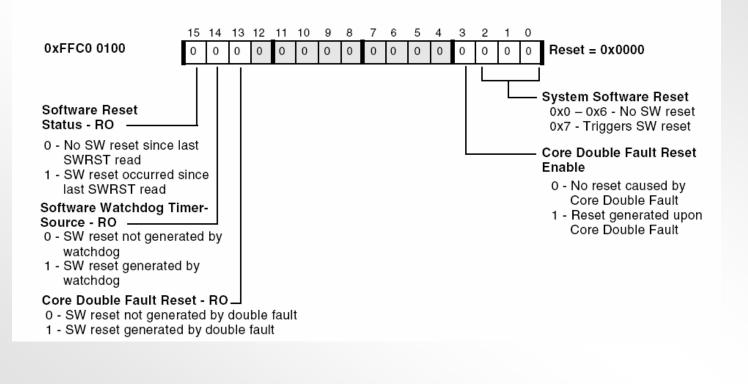
- If executing from external memory after hardware reset, the ADSP-BF533 will be in the Reset ISR
- This implies the part is in Supervisor mode, but...
 - Lower priority events can not be serviced until you return from Reset ISR
 - Customer can force the lowest priority interrupt in order to remain in Supervisor mode
- If booting after hardware reset, the above process is automatically performed by the Boot ROM

Supervisor Mode Reset Example


/*****Code to	Stay in Supervisor Mode************************************	
SP.H = 0xF003;	//Set up supervisor stack	
SP.L = 0xFFDC;		
P0.L =LO(EVT15);	//Point to EVT15 in Event Vector Table	
P0.H = HI(EVT15);		
P1.L = START;	//Point to start of Boot Rom code (or any other code)	
P1.H = START;		
[P0] = P1;	//Place the address of start code in EVT15 of Event Vector Table	
P0.L = LO(IMASK);		Used to re-enter
R0 = W[P0];		Supervisor mode
R1.L = LO(EVT15);		
R0 = R0 R1;		
W[P0] = R0;	//Set(enable) EVT15 bit in IMASK Register	
RAISE 15;	//Invoke ET15 interrupt (still in higher-priority ISR, so nothing happens yet)	
P0.L = WAIT_HERE;		
P0.H = WAIT_HERE;		
RETI = P0;		
RTI;	//Return from Reset Interrupt to allow processing of lower priority interrupts	
WAIT_HERE:	//Wait here till EVT15 interrupt is processed	
JUMP WAIT_HERE;		
/*************************************	***************************************	
START:		
[SP] = RETI;	// Re-enable interrupts	
KAZTEK		
ENGINEERING	16-32	DEVICES

Default Settings after Reset

Item	Description of Reset State	_
Core		
Operating mode	Supervisor mode in reset event, clocks stopped	
Rounding mode	Unbiased rounding	
Cycle counters	Disabled, zero	
DAG registers (I,L,B,M)	Random values (must be cleared at initialization)	- DLL Softings offer Deast (Evenue)
Data and Address registers	Random values (must be cleared at initialization)	 PLL Settings after Reset (Example)
IPEND, IMASK, ILAT	Cleared, interrupts globally disabled with IPEND bit 4	Assume CLKIN = 25MHz Oscillator
CPLBs	Disabled	
L1 Instruction Memory	SRAM (cache disabled)	- MSEL[5:0] = 0x0A, DF = 0
L1 Data Memory	SRAM (cache disabled)	VCO = 25MHz x 10 = 250MHz
Cache validity bits	Random (must be set to invalid before cache initialization)	CCLK = VCO/1 = 250 MHz
System		
Booting methods	Determined by the values of BMODE pins at reset	SCLK = VCO/5 = 50 MHz
MSEL clock frequency	Reset value = 10	
PLL Bypass mode	Disabled	
VCO/Core Clock Ratio	Reset value = 1	
VCO/System Clock Ratio	Reset value = 5	
Peripheral clocks	Disabled	

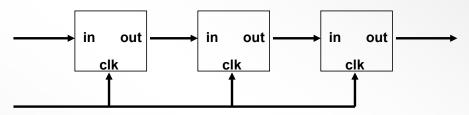

BF533 System Configuration Reset Register (SYSCR)

Software Reset Register (SWRST)

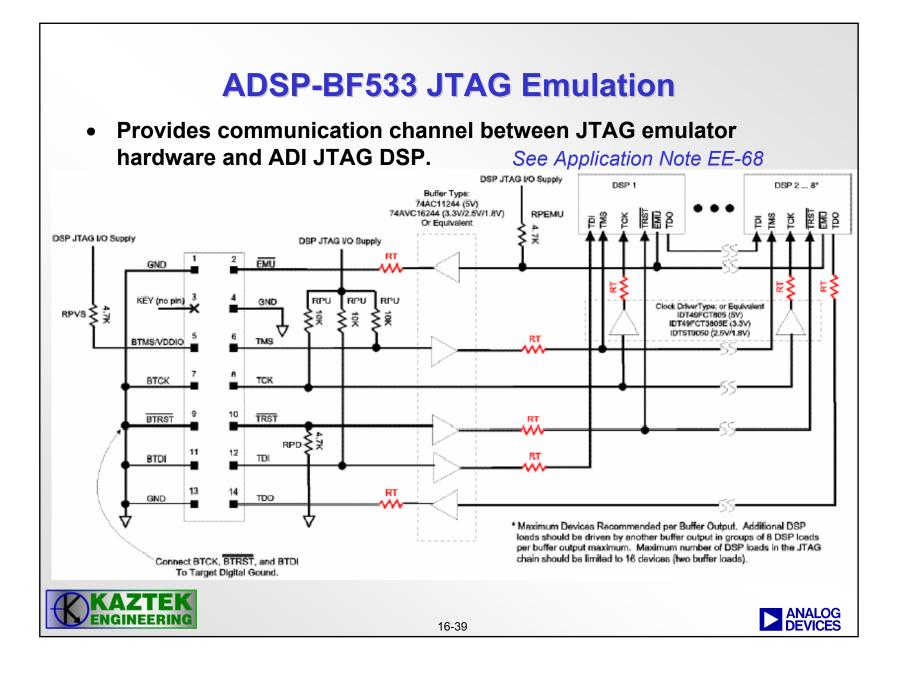
Software Reset Register (SWRST)

JTAG Port

In-Circuit Emulator Support


- 5-pin JTAG TAP (Test Access Port) allows access to JTAG features
- TAP Controller handles test register event sequencing
- Boundary scan facilitates board-level connectivity testing
 - Up to 32 boundary-scan instructions accommodated

ADSP-BF533 JTAG


- IEEE standard 1149.1-1990
- Boundary Scan (bsdl files available)

- Read Part Identification Code
 - Analog Devices JEDEC ID is 0x0E5
 - Instruction Register is 5 bits wide
- In Bypass mode behaves like a 1-bit shift register
- Emulation (ADI enhancement)

Board Design and Layout

What do you need for ADSP-BF533/BF561 Hardware Design?

- ADSP-BF533 DSP Hardware Reference
 - Includes Hardware Examples
- The Datasheet (check the web for latest revision!)
 - Insure that all timing requirements are met!!!!
- The Anomaly Sheet (check the web for latest revision!)
- Use EZ-Kits as Design Example
- Look for Application Notes
- Recommended Reading

High Speed Digital Design - A Handbook of Black Magic Johnson & Graham Prentice Hall,Inc. ISBN 0-13-395724-1

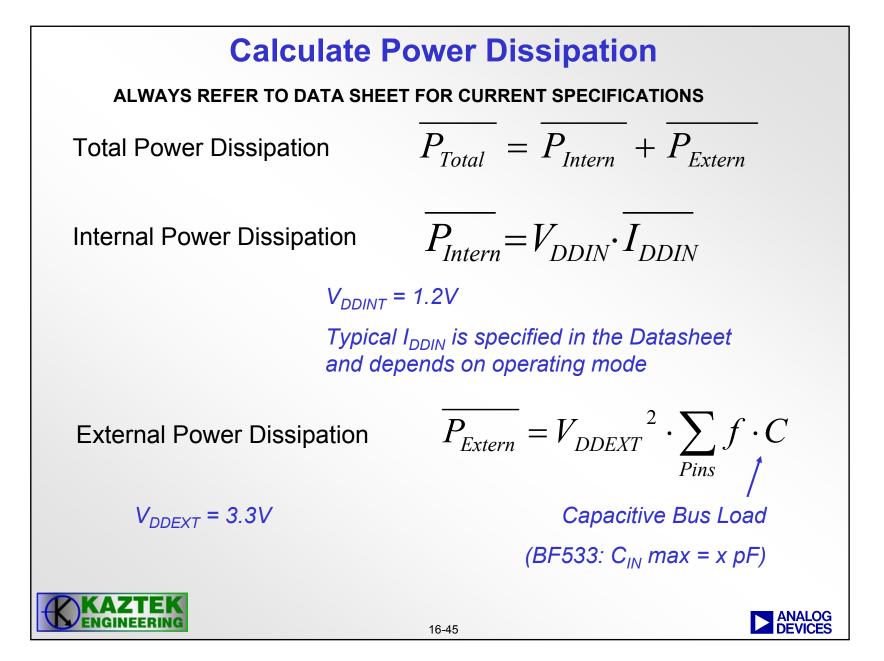
Navigating the Datasheet

- Power Supply and Input Voltage and Temperature Ranges
 - ABSOLUTE MAXIMUM RATINGS (When violated, device might be damaged)
 - RECOMMENDED OPERATING CONDITIONS (When violated, device might not work properly)
- ELECTRICAL CHARACTERISTICS
 - Tested or guaranteed DC characteristics
- TIMING PARAMETERS
 - How do Interface Output Pins behave
 - What do Interface Input Pins require
- ADDITIONAL DIAGRAMS
 - Typical behavior of power consumption and I/O stages
 - No guaranteed limits !

Powering Up the DSP

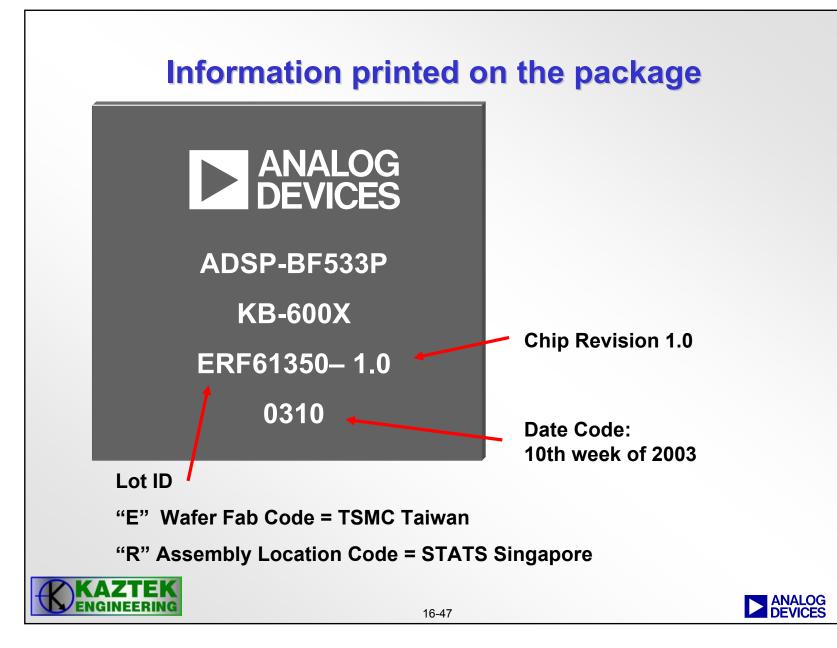
- The ADSP-BF533 has multiple power domains.
- Apply the core supply (VDDINT) first and limit supply current as well as the duration of unpowered I/O to prevent latch-up effects and damage of isolating diodes.
- Never apply external clock to CLKIN pin while DSP is not powered.

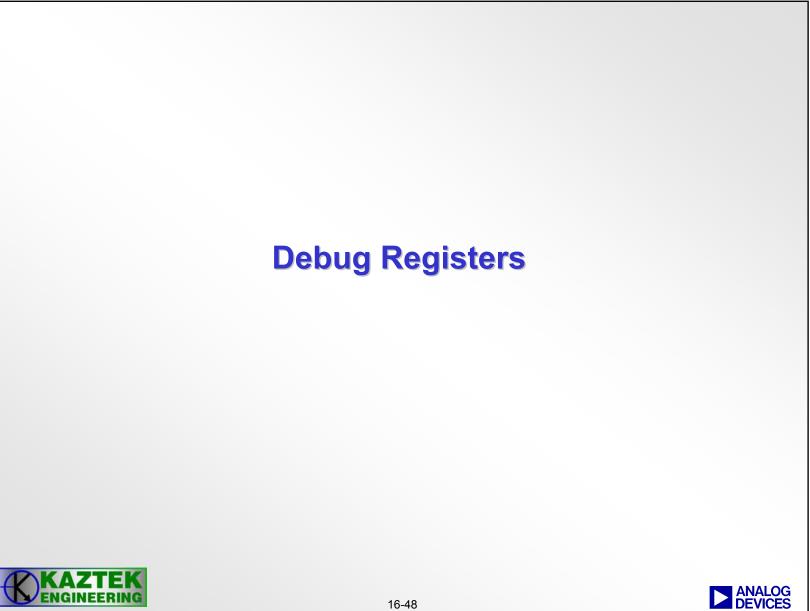
Power Domain	V _{DD} Range
All internal logic	0.8V(min) -1.2V ± 5%
All I/O	2.5-3.3V ± 10%


ADSP-BF533 Internal Current Consumption

- Core Supply IDDINT
 - Peak
 - Executing from internal memory
 - TBD
 - Typical
 - Executing from internal memory
 - 50% are MAC instruction
 - Power-down All
- Peripheral Supply IDDINT
 - Typical
 - Power-down

ALWAYS CHECK DATA SHEET FOR LATEST INFO.




High-Speed Design Issues

- Awareness of High Speed Digital Design
 - Signal Integrity on Wires and Connectors
 - Noise generated by Crosstalk
 - EMI / EMC Compliance
- Bypassing Capacitors (Ceramic)
 - 100nF decoupling capacitors between VddInt and Gnd
 - 100nF decoupling capacitors between VddExt and Gnd
 - One 100nF capacitor at the power supply connector of the board
- Grounding and Shielding
 - Dedicated VDD and GND supply plane recommended
 - No Ground Loops
 - Signal Return Path as short as possible
 - No Signal Routing over Split Planes

Advanced Support for Embedded Debug

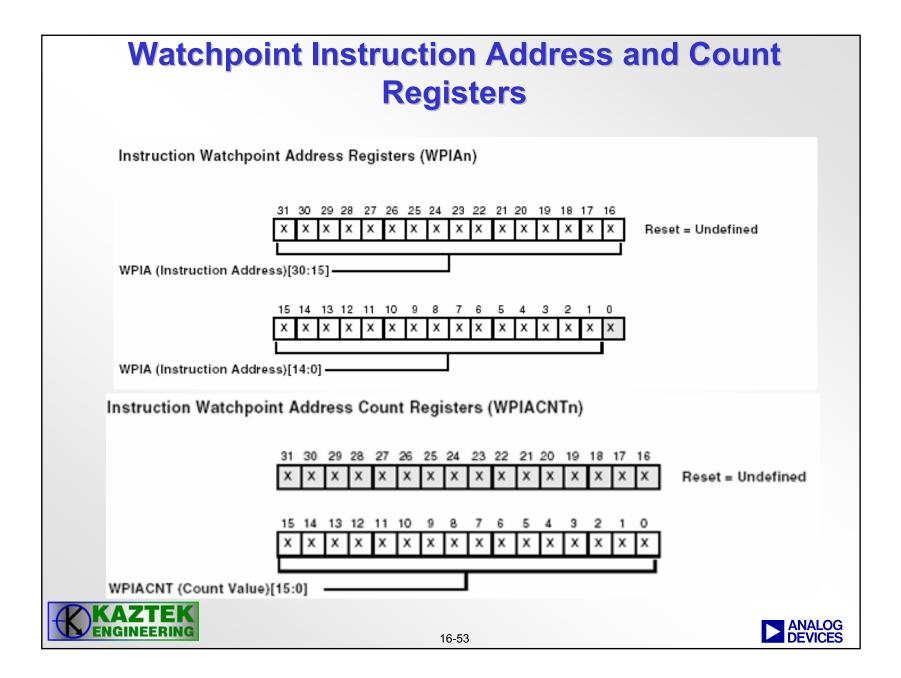
- Hardware Breakpoints
 - 6 Instruction and 2 Data Watchpoints
- Performance Monitor Unit
 - Counters for cycles and occurrences of specific activities
- Execution Trace Buffer
 - Stores last 16 non-incremental PC values

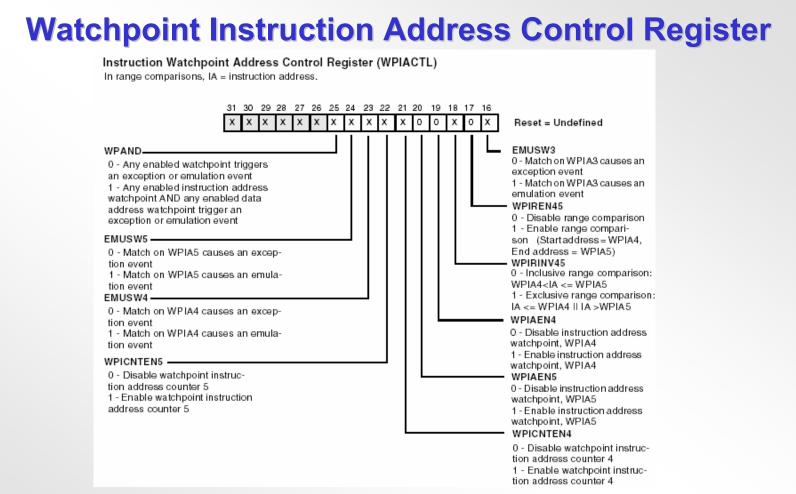
Reference Material

System Design

Hardware Breakpoints

- 8 Watchpoints for Instruction/Data Address Comparison
 - 6 Instruction Watchpoints, 2 Data Watchpoints
 - Can be used as 4 Watchpoint ranges instead (3 instruction address ranges + 1 data address range)
- Allow conditional program halting, based on user-specified conditions
 - Memory accesses within a specified range
 - Data loaded into register
 - Stack activity
- Counter allows tracking of watchpoint events
- Ability to combine events
 - Break ONLY when ALL or when ANY enabled events occur


Watchpoint Control Registers


The Watchpoint Unit contains these MMRs, which are accessible in Supervisor and Emulator modes:

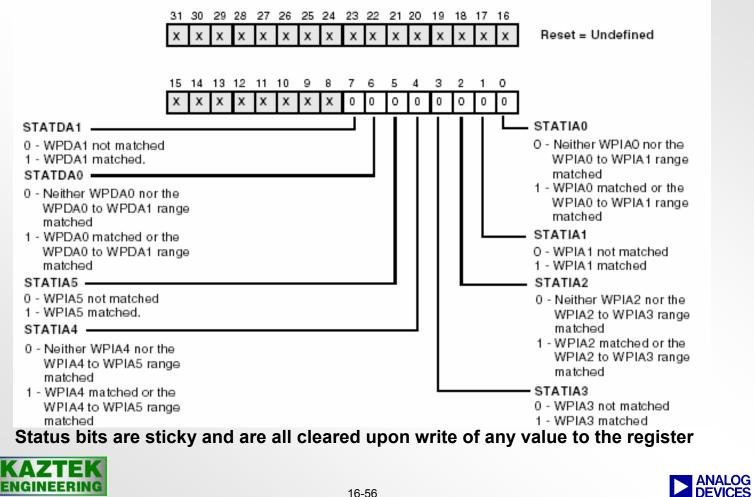
- The Watchpoint Status register (MPSIAI)
- Six Watchpoint Instruction Address registers (WPIA[5:0])
- Six Watchpoint Instruction Address Count registers (WPIACNT[5:0])
- The Watchpoint Instruction Address Control register (WPIACTL)
- Two Watchpoint Data Address registers (WPDA[1:0])
- Two Watchpoint Data Address Count registers (NPDACNT[1:0])
- The Watchpoint Data Address Control register (WPDACTL)

Bits 0-15 of WPIACTL (not shown) control remaining instruction

watchpoints

Watchpoint Data Registers

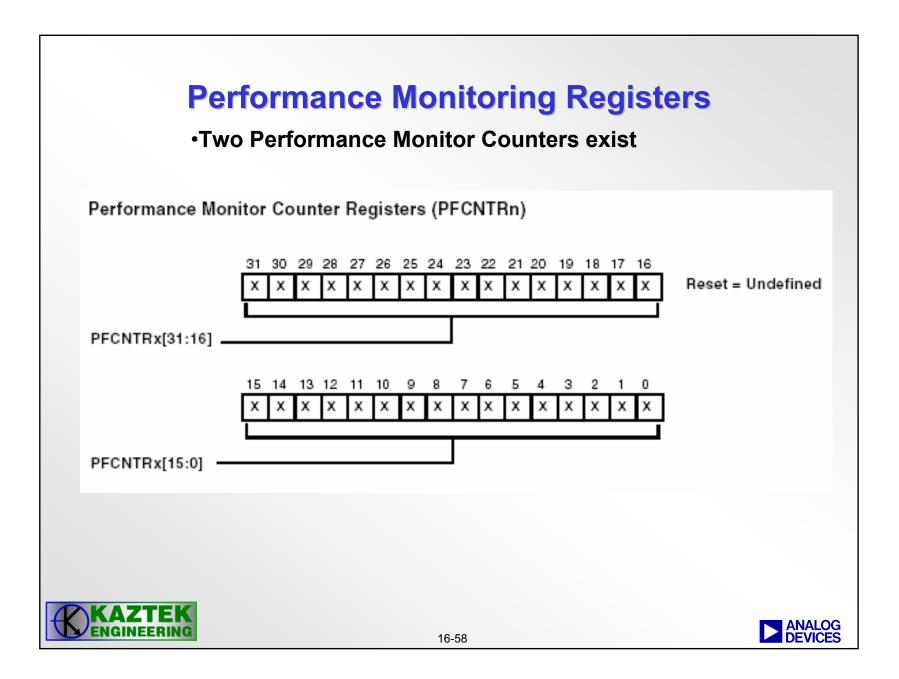
Analogous set of registers exist for two Data Watchpoints


Each data watchpoint is controlled by four bits in the WPDACTL register:

Bit Names	Description
WPDACCx	Determines whether the match should be on a tead or write access.
WPD8RCx	Determines which DAG the unit should monitor.
WPDCNTENs	Enables the counter that counts the number of address matches. If the counter is disabled, then every match causes an event.
WPDAENx	Enables the data watchpoint activity.

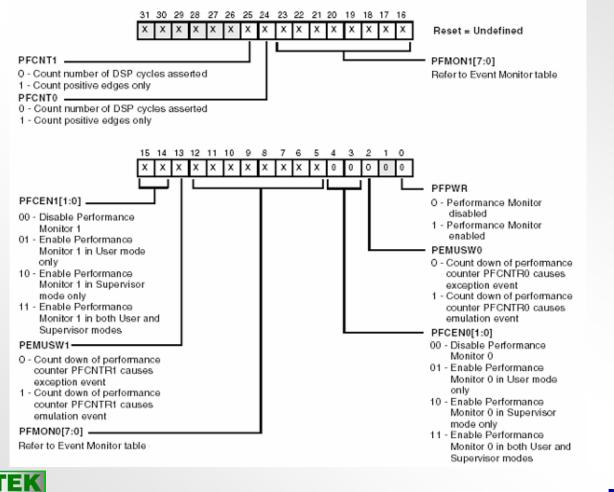
Watchpoint Status Register

Watchpoint Status Register (WPSTAT)



Performance Monitoring

- Dedicated registers available for system tuning and load balancing
- Includes two 32-bit counters, and registers to count number of cycles or occurrences of an event
 - Unit accesses (MAC0, MAC1, DAG0, DAG1)
 - Branches and exceptions
 - Memory conflicts
 - Loads/stores (8/16/32-bit)
 - Cache hits and misses
 - Interrupt latencies



Performance Monitor Control

Performance Monitor Control Register (PFCTL)

What can be counted?

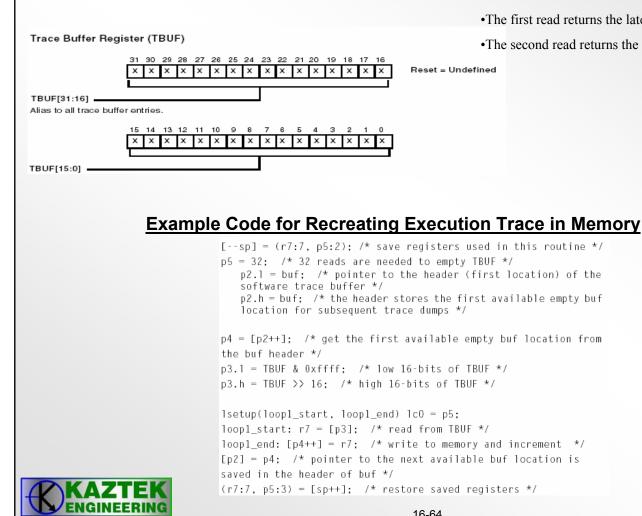
PFMONx Fields	Events That Cause the Count Value to Increment	PFMONx Fields	Events That Cause the Count Value to Increment
0x00	Loop 0 iterations	0x83	Data memory write buffer full stalls due to high to low priority code transition
0x01	Loop 1 iterations	0x84	Data memory store buffer forward stalls due to lack of
0x02	Loop buffer 0 not optimized	UXU1	committed data from processor
0x03	Loop buffer 1 not optimized	0x85	Data memory fill buffer stalls
0x04	PC invariant branches	0x86	Data memory array or TAG collision stalls (DAG to DAG, or DMA to DAG)
0x06	Conditional branches	0x87	Data memory array collision stalls (DAG to DAG or DMA to DAG)
0x09	Total branches (calls, returns, branches, but not inter- rupts)		
		0x88	Data memory stalls
0x0A	Stalls due to CSYNC, SSYNC	0x89	Data memory stalls sent to processor
0x0B	EXCPT instructions	0x8A	Data memory cache fills completed to Bank A
0x0C	CSYNC, SSYNC instructions	0x8B	Data memory cache fills completed to Bank B
0x0D	Committed instructions	0x8C	Data memory cache victims delivered from Bank A
0x0E	Interrupts taken	0x8D	Data memory cache victims delivered from Bank B
		0x8E	Data memory cache high priority fills requested
0x0F	Misaligned address violation exceptions	0x8F	Data memory cache low priority fills requested
0x10	Stall cycles due to read after write hazards on DAG registers	0x90	Code memory fetches postponed due to DMA colli- sions (minimum count of two per event)
0x13	Stall cycles due to RAW data hazards in computes	0x91	Code memory TAG stalls (cache misses, or FlushI operations, count of 3 per FlushI). Note code memory stall results in a processor stall only if instruction assembly unit FIFO empties.
0x80	Processor stalls to memory		
0x81	Data memory stalls to processor hidden by processor	-	
	stall	0x92	Code memory fill stalls (cacheable or non-cacheable). Note code memory stall results in a processor stall only if instruction assembly unit FIFO empties.
0x82	Data memory store buffer full stalls		
		0x93	Code memory 64 bit words delivered to processor instruction assembly unit

Performance Monitoring: Cycle Counters

- All cycles are counted
- Counters stop during Emulation
- Can be read in all operating modes
- Can only be written in the Emulator or Supervisor modes
- Must be enabled to use

```
Example Code for Turning on Cycle Counters
R2 = 0;
CYCLES = R2;
CYCLES2 = R2;
R2 = SYSCFG;
BITSET(R2,1);
SYSCFG = R2;
/* Insert code to be benchmarked here. */
```


Execution Trace


- 16-entry trace buffer stores changes in program flow (noncontiguous addresses)
 - Jumps
 - Calls
 - Interrupts
- Used for recent-history examination
- Zero-overhead hardware loops register only once in the trace buffer

Trace Buffer Registers Trace Buffer Control Register (TBUFCTL) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 х х х х х х х х х х Reset = Undefined х х х х 15 14 13 12 11 10 9 8 7 6 5 2 4 з 1 0 х 0 0 0 0 0 х х х х х х х х TBUFPWR 0 - Trace buffer is active CMPLP[1:0] -1 - Trace buffer is off 00 - Compression disabled Record all discontinuities TBUFEN 01 - Compress single-level 0 - Trace buffer disabled loops 1 - Trace buffer enabled 10 - Compress two-level loops TBUFOVF 0 - Overflows are ignored 1 - Trace buffer overflow causes an exception event Trace Buffer Status Register (TBUFSTAT) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Reset = Undefined х х х х х x х х х х х х х х х х 15 14 13 12 11 10 9 8 76 - 5 4 з 2 1 0 х х х х х х х 0 0 0 0 0 TBUFCNT[4:0] -Number of valid discontinuities stored in the trace buffer ANALOG DEVICE

Accessing the Trace Buffer

•The first read returns the latest branch target address.

•The second read returns the latest branch source address

