
1

5-1 a

Section 5Section 5

Addressing Modes

2

5-2 a

Watchdog
And Timers

DMA Controller

UART0
IRDA

Real Time Clock

Programmable
flags

SPORTs SPI

EBIU

1KB internal
Boot ROM

CORE/SYSTEM BUS INTERFACE

32 Core D1 bus 64 Core I bus

Core
Timer

JTAG/
Debug

Performance
Monitor

Core
Processor

L1
Instruction
Memory

L1 Data

Memory
LD1 32

64

PPI

Peripheral Access Bus (PAB)

DMA Access Bus
(DAB)

External Access Bus
(EAB)

Power
Management

Event
Controller

32DMA Mastered
bus

ADSP-BF533 Block Diagram

Core DA0 bus32 32
Core D0 bus

Core DA1 bus32
Core Clock (CCLK) Domain

System Clock (SCLK) Domain

LD0 32

16 1616

16

External Port Bus
(EPB)

DMA Ext Bus
(DEB)

16

DMA Core Bus (DCB)16

SD32

Data
Address
Control

3

5-3 a

ADSPADSP--BF533 CoreBF533 Core

System Bus Interface Unit

L1 Data Memory

4KB SRAMDcache/SRAM

3232

Memory
Management

Core D1 bus
Core D0 bus

L1 Instruction Memory
SRAM/Cache

64 Core I bus

LD0
32

SD
32

LD1
32

DA0
32

DA1
32

IAB32

IDB64

Program
Sequencer

P0
P1
P2
P3
P4
P5
SP
FP

B0
B1
B2
B3

M0
M1
M2
M3

I0
I1
I2
I3

L0
L1
L2
L3

DAG0 DAG1

LC0
LC1

LT0 LB0
LT1 LB1

RETS
RETI
RETX
RETN
RETF

ASTAT
SYSCFG

SEQSTAT

Core Registers

Data Arithmetic Unit

acc1

40barrel
shifter

acc0

40

1616
8 8 8 8

R0
R1
R2
R3
R4
R5
R6
R7

Addressing Arithmetic Unit

System Bus Interface Unit

L1 Data Memory

4KB SRAMDcache/SRAM

3232

Memory
Management

Core D1 bus
Core D0 bus

L1 Instruction Memory
SRAM/Cache

64 Core I bus

LD0
32

SD
32

LD1
32

DA0
32

DA1
32

IAB32

IDB64

Program
Sequencer

P0
P1
P2
P3
P4
P5
SP
FP

B0
B1
B2
B3

M0
M1
M2
M3

I0
I1
I2
I3

L0
L1
L2
L3

DAG0 DAG1

LC0
LC1

LT0 LB0
LT1 LB1

RETS
RETI
RETX
RETN
RETF

ASTAT
SYSCFG

SEQSTAT

Core Registers
LC0
LC1

LT0 LB0
LT1 LB1

RETS
RETI
RETX
RETN
RETF

ASTAT
SYSCFG

SEQSTAT

Core Registers

Data Arithmetic Unit

acc1

40barrel
shifter

acc0

40

1616
8 8 8 8

R0
R1
R2
R3
R4
R5
R6
R7

Addressing Arithmetic Unit

4

5-4 a

Address Registers

I0

I1

I2

I3

L0

L1

L2

L3

B0

B1

B2

B3

M0

M1

M2

M3

31 0 31 0 31 0 31 0

P0

P1

P2

P3

P4

P5

31 0

FP

SP

USP

Address
Registers

• One set of 32 bit general purpose Pointer registers
• P0-P5, SP and FP

• One set of 32 bit DSP addressing Index registers
• I0-I3, B0-B3, L0-L3, M0-M3

• All addresses are byte addresses into a 4 GB address space

SP points to supervisor stack in
Supervisor mode and user stack in
User mode
USP is accessible in supervisor
mode only – Allows access to user
stack location while in Supervisor
mode

5

5-5 a

Addressing MethodsAddressing Methods

• Register Indirect Addressing
− Index Registers (32-bit and 16-bit accesses)
− Pointer Registers P0 – P5 (32-bit, 16-bit, and 8-bit accesses)
− Stack and Frame Pointer Registers (32-bit accesses)

• Types of address pointer modify
− Modify/Post-Modify

• Linear addressing
• Circular buffering/modulo addressing

− Enables automatic maintenance of pointers to stay
within bounds of a circular buffer

• Bit Reversal (Modify only)
− Pre-Modify with update (using Stack Pointer)
− Pre-Modify without update

6

5-6 a

Indirect Memory AccessIndirect Memory Access

• Indirect Addressing
− Square brackets ‘[‘ and ‘]’ denote the use of Index, Pointer and

Stack/Frame Pointer Registers as address pointers in data fetches

• Loads are of the general form:
dreg = [preg] ; // Where the preg points to some location in memory
dreg = [ireg] ; // Where the ireg points to some location in memory

• Stores are of the general form:
[preg]=dreg ; // Where the preg points to some location in memory
[ireg] =dreg ; // Where the ireg points to some location in memory

7

5-7 a

Indirect Addressing Indirect Addressing

• Pointer Registers (P0-P5) support additional 16-bit (W) and 8-bit (B)
options of the form:
− Dreg_lo_hi = W[preg]; //loads 16-bit value pointed to by preg and loads into hi or lo half of dreg

− Dreg = B[preg] (z); //loads 8-bit value pointed to by preg and loads into dreg

Analogous store instructions also exist

• Index Registers (I0-I3) support an additional 16-bit (W) option of the form:
− W[ireg]= Dreg_lo_hi; //stores 16-bit value in dreg to location pointed to by ireg

Analogous load instructions also exist

• When an 8 or 16-bit value is transferred to a 32-bit register, an extension
option must be used to specify sign (X) or zero (Z) extension

For example:
− R0=W[P0] (Z); // Loads 16 bit value into 32-bit register and zero

//extends result

8

5-8 a

PostPost--Modify OperationsModify Operations

• Post-Modify Instructions
− 32-bit accesses

R0 = [P0++]; /* Increments the value of P0 by 4 after the read */
R0 = [P1 ++ P2]; /* Increments P1 by P2 after reading 32-bit word from P1 only */

− 16-bit accesses
R0.l = W[I0--]; /* Decrements the value of I0 by 2 after the read */
R0.h = W[I2++M2]; /* Increments the value of I2 by M2 after reading 16-bit

word from I2 only */
− 8-bit accesses

R0 = B[P0++](z); /* Increments the value of P0 by 1 after the read */
R2 = B[P4 ++P5](x);/* Increments P4 by P5 after reading 8-bit word from P4 only */

• Analogous store instructions exist

Address Pointer

Modifier

+

AP + M

1. output
2. update

9

5-9 a

PrePre--Modify OperationsModify Operations

• The only pre-modify instruction with update supported uses the
Stack Pointer
− [-- SP] = R0; /* Decrements current value in SP by 4, and then

writes the value in R0 to the updated value in SP */

Address Pointer

Modifier

+

AP + M

2. output
1. update

10

5-10 a

Indexed Addressing with Immediate OffsetIndexed Addressing with Immediate Offset

• Pointer Registers may be modified by an immediate value.

• These operations provide a pre-modify without update operation

P0 = [P1 + 0x10]; /* loads P0 with value that P1 + 0x10 points to */
[P0 + 0x20] = R0; /* stores r0 in to the location that P0 + 0x20

points to */

Address Pointer

Modifier

+

AP + MOutput only
(No Update)

11

5-11 a

Modifying DAG and Pointer RegistersModifying DAG and Pointer Registers

• Direct modification of Index and Pointer Registers
− Pointer registers use a P-register as modifier

P0 += P1; /* P0 is modified by P1. */

− Index registers use an M-register as modifier
I0 += M1; /* I0 is modified by M1. */

• Modify-Decrement supported as well as Modify-Increment

Example
− P0 -= P4;

Address Pointer

Modifier

+/-

AP + M

Update only
(No fetch)

12

5-12 a

Stack InstructionsStack Instructions
• Push Instruction: [--SP] = src_reg;

− The push instruction stores the contents of a specified register or registers in
the stack

− The instruction pre-decrements the stack pointer to the next available location
in the stack first

− Push multiple instruction allows multiple registers to be placed on the stack
with single instruction

13

5-13 a

Stack Instructions (Continued)
• Pop Instruction: dest_reg= [SP++];

− The pop instruction loads the contents of the stack indexed by the current
stack pointer into a specified register

− The instruction post-increments the stack pointer to the next occupied
location in the stack before concluding

− Pop multiple instruction allows multiple registers to be popped from the
stack with single instruction

14

5-14 a

Stack Instructions (Continued)Stack Instructions (Continued)

15

5-15 a

Circular BufferingCircular Buffering

• Only used with Index Registers
− Index (I) registers holds the address sent out on the address bus.
− Base (B) registers contain the starting address of the circular

buffer.
− Length (L) registers specify the length of the buffer.
− Modify (M) registers contain the value (positive or negative) that

will be added to the I registers at the end of each memory access.
• The size of the modify value must be less than or equal to the

length of the circular buffer.
• On a Post-Modify access, the address pointed to by the Index

register automatically wraps to the circular buffer defined by the
corresponding Base address and Length registers.

• Note: L registers must be initialized to 0 when not using circular
buffering

16

5-16 a

Circular Buffer ExampleCircular Buffer Example
0x00000001

0x00000002

0x00000003

0x00000004

0x00000005

0x0000000B

0x00000006

0x00000007

0x00000008

0x00000009

0x0000000A

0x00000001

0x00000002

0x00000003

0x00000004

0x00000005

0x0000000B

0x00000006

0x00000007

0x00000008

0x00000009

0x0000000A

Address

0

4

8

C

10

14

18

1C

20

24

28

• Base address and Starting Index Address = 0
• Buffer length L = 44

• There are 11 data elements and each data element is 4 bytes
• Modify value M = 16 (4 elements * 4 bytes/element)

1st Access

2nd Access
5th Access

4th Access

3rd Access

17

5-17 a

Circular Buffers (Modulo Addressing)Circular Buffers (Modulo Addressing)

18

5-18 a

Bit Reverse AddressingBit Reverse Addressing

• Bit Reverse Carry Adder (BREV) :
− When this option is specified, the carry bit propagates from left to right.
− Used to support operand addressing for FFT, DCT, and DFT algorithms

• Only supported with Modify-Increment instruction
− Preg += Preg (BREV);
− Ireg += Mreg (BREV);

• With the Index Register version of this instruction, circular buffering is
disabled

I0 += M0 (brev);
Pointer register example

P3 += P0 (brev);

19

5-19 a

DAG Instructions 1 of 6DAG Instructions 1 of 6

20

5-20 a

DAG Instructions 2 of 6DAG Instructions 2 of 6

21

5-21 a

DAG Instructions 3 of 6DAG Instructions 3 of 6

22

5-22 a

DAG Instructions 4 of 6DAG Instructions 4 of 6

23

5-23 a

DAG Instructions 5 of 6DAG Instructions 5 of 6

24

5-24 a

DAG Instructions 6 of 6DAG Instructions 6 of 6

25

5-25 a

Data Address GeneratorData Address Generator
ExerciseExercise

Lab 6

26

5-26 a

Reference MaterialReference Material

Addressing

27

5-27 a

Memory AddressingMemory Addressing

There are 4 units that generate addresses for memory accesses
• Two Data Address Generators (DAG0 and DAG1)

− Generates addresses for data fetches
− User programs addresses for data fetches

• Extremely flexible data addressing
• DAG0 and DAG1 can be used in the same instruction (to

perform a dual data fetch
• The Program Sequencer

− Generates addresses for instruction fetches
− Automatically controlled from program

• The DMA controller
− Generates addresses for DMA transfers

• User defines addresses for source and destination of transfer
• DMA controller automatically generates addresses to complete

DMA transfer

28

5-28 a

BF533 Memory AddressingBF533 Memory Addressing

• All memory on the BF533 resides in a 32 bit linear address range
• Different types of memory are mapped into address spaces

within the linear address range (i.e. the memory map)
− The BF533 provides decoded bank selects for the address spaces

• For Example, to access Async Bank 0, you simply fetch from an
address in the range of 0x2000 0000 and 0x200F FFFF. The
BF533 will automatically assert the corresponding bank Select
pin and drive the EPB address lines.

• Each of the BF533 family members has it’s own memory map
− You use the memory map to define (in the LDF) all the available

memory in your system

29

5-29 a

ADSPADSP--BF533 Memory MapBF533 Memory Map

30

5-30 a

ADSPADSP--BF532 Memory MapBF532 Memory Map

31

5-31 a

ADSPADSP--BF531 Memory MapBF531 Memory Map

32

5-32 a

Memory AddressingMemory Addressing

• All memory for the BF533 family is addressed in bytes
− A single byte requires one memory location
− A 16 bit word requires 2 memory locations
− A 32 bit word requires 4 memory locations
− A 64 bit word requires 8 memory locations

• The Program Sequencer fetches Instructions and will
automatically increment the address correctly

• The programmer is responsible for incrementing the address for
data fetches
− This is handled through instruction syntax

33

5-33 a

Indirect Address ExamplesIndirect Address Examples

• DSP Addressing Modes – Index Registers
− Indirect, auto-increment, auto-decrement for 16/32-bit loads/stores

R0 = [I2]; // Loads R0 with 32-bit value that address I2 points to

R0.H = W[I0++]; // Loads R0.H with 16 bit value that address I0 points to

// W implies a 2 byte, post modify increment

[I2--] = R0; // Stores R0 to address that I2 points to

// Address of I2 is decremented by 4 bytes after store
R1 = [I2 ++ M1]; // Post-modify with non-unity stride for 32-bit loads/stores

• General Addressing Modes – Pointer Registers
− Indirect, auto-increment, auto-decrement, indexed with immediate offset for 8/16/32-bit

loads/stores

R3 = [P0]; // Loads R0 with 32-bit value that address P0 points to

R7 = W[P1++] (z); // Loads R7.L with 16 bit value that address P1 points to

// W implies a 2 byte, post modify increment

R2 = B[P2--] (Z); // B implies a 1 byte decrement
R0.H = W[P1++P2]; //Post-modify with non-unity stride for 16/32-bit loads/stores

34

5-34 a

Additional InstructionsAdditional Instructions• Link/Unlink:

Example:
link 8; /* establish frame with 2 words (8 bytes) allocated for local variables */
[--sp] = (r7:0, p5:0); /* Save D- and P-registers */
(r7:0, p5:0) = [sp++]; /* restore D- and P- registers */
unlink; /* close the frame */

